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Abstract. We consider the weakening of Ramsey’s theorem that arises from considering only

translation-invariant colourings of pairs, and show that this has the same strength (both from the

viewpoint of Reverse Mathematics and from the viewpoint of Computability Theory) as the adjacent

Hindman’s theorem, proposed by L. Carlucci (Arch. Math. Log. 57 (2018), 381–359). We also

investigate some higher dimensional versions of both of these statements.

1. Introduction

In this paper, we consider some Ramsey-theoretic combinatorial results from the perspective of both

Computability Theory and Reverse Mathematics. Ramsey’s theorem on dimension n, denoted RTn

(n ≥ 1), is the statement that for every c : [N]n −→ k (where k is an arbitrary finite number), there

exists an infinite set X ⊆ N such that [X]n is c-monochromatic. On the other hand, Hindman’s

theorem, denoted HT, is the statement that for every c : N −→ k there exists an infinite set X ⊆ N

such that the set

FS(X) =

{∑
x∈F

x

∣∣∣∣F ⊆ X is finite and nonempty

}
is c-monochromatic.

These two principles have been extensively studied, and constitute an important vein of contemporary

research in the interface between combinatorics and (various branches of) logic. For example, it is

known that, if n ≥ 3, then RTn is equivalent to ACA0 over RCA0; somewhat surprisingly, RT2 is a

principle at the same time strictly weaker than ACA0 and strictly stronger than WKL0, whereas

RT1 is simply the pigeonhole principle (strictly stronger than plain RCA0 but much weaker than

WKL0). On the other hand, it is also known that, again over RCA0, ACA
+
0 implies HT which in

turn implies ACA0, where ACA+
0 is essentially ACA0 plus the existence of the ω-th Turing jump of

every set. The precise strength of HT in the hierarchy of reverse-mathematical principles is still

unknown, and determining this strength is currently one of the important open problems in Reverse

Mathematics.
1



2 B. ACEVES, D. FERNÁNDEZ, L. ROMERO, AND L. VILLAGÓMEZ

With the finer distinctions provided by Computability Theory, especially the theory of Turing

reducibility, one can be more precise about the results just mentioned. For example, for Ramsey’s

theorem, it is known [8] that for every instance c of the problem (that is, every colouring) there exists

a solution (a set that is monochromatic for the colouring in question) X such that X ≤T c(2n+2),

the (2n+ 2)-fold Turing jump of c; on the other hand, there is a computable instance c of Ramsey’s

theorem such that every solution X satisfies ∅(n−2) ≤T X. In the case of Hindman’s theorem, it is

known [1] that there are computable instances c to the theorem such that every monochromatic

solution X satisfies ∅′ ≤T X whereas every instance c of the theorem admits a solution X such

that X ≤T c(ω+1).

In this paper, we consider certain weakenings of each of the two principles mentioned above. On the

front of Hindman’s theorem, we shall work with L. Carlucci’s Adjacent Hindman’s Theorem proposed

in [2], which results from weakening the monochromaticity requirement not to a full set FS(X) but

rather to the restricted set AFS(X) of adjacent finite sums, meaning those sums of finitely many

consecutive elements of X when ordered increasingly, leaving no gaps. Carlucci showed that, over

RCA0, RT
2 implies AHT, even with an extra condition that we will also consider, called apartness.

On the other hand, we will consider a weakening of Ramsey’s theorem that arises from restricting

the allowable problems for which we require a solution —concretely, stating the theorem only for

those colourings that are invariant under the translation action of Z, obtaining what we will call

the Z-Ramsey’s theorem. Although this principle has not been previously studied within Reverse

Mathematics, the idea of restricting instances of Ramsey’s theorem only to translation-invariant

colourings has already been used, e.g., by Petrenko and Protasov in their definition of Z-Ramsey

ultrafilters [9].

Many of the principles mentioned in the previous paragraph turn out to be equivalent to ACA0 over

RCA0, so for the most part the viewpoint of Reverse Mathematics will not be very informative in

that respect. In view of this, we focus more on the Computability Theoretic aspect of the principles,

thinking instead about the reducibility relation by means of which an instance of one problem can

be turned into an instance of a different problem and a solution to the latter gets turned back

into a solution to the original instance. More concretely, we will work with uniform reducibility,

sometimes also known as (or a particular case of) Weihrauch reducibility1. Recall [7] that a problem

1In fact, the proofs of the theorems in this paper actually establish what is known as a strong Weihrauch reducibility,
since e.g. the Turing functionals for turning a solution to one problem into a solution of the other do not require
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P is uniformly reducible to another problem Q, denoted P ≤u Q, if there are Turing functionals

Φ,Ψ such that for every instance X of P , ΦX is an instance of Q, and for every solution Y to ΦX ,

ΨX⊕Y is a solution to X. So we will use this notion of reducibility to gauge the position of these

principles within the computability-theoretic hierarchy; all of our proofs can be turned, by simply

looking at them carefully enough, into proofs in RCA0, thus yielding corresponding (but coarser)

Reverse Mathematics results as corollaries.
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2. The Z-invariant Ramsey theorem

Definition 1.

(1) Given an n ∈ N, we will say that a colouring of n-tuples c : [N]n −→ k is Z-invariant if, for

every n-tuple {x1, . . . , xn} ∈ [N]n and for every z ∈ N, it is the case that c({x1, . . . , xn}) =

c({x1 + z, . . . , xn + z}).

(2) The Z-Ramsey theorem for n-tuples, which we will denote by Z-RTn, is the statement

that every Z-invariant colouring of n-tuples admits an infinite monochromatic set.

It is clear that, for each n ∈ N, Z-RTn is a weaker statement than RTn. The following theorem basi-

cally establishes that Z-RTn+1 implies RTn over RCA0, although, as we warned in the introduction,

we will attempt to provide more precise information by phrasing our theorem in the language of

uniform reducibility.

Theorem 2. For each n ≥ 2, RTn ≤u Z-RTn+1.

Proof. The witnessing Turing functionals, which we denote by Φ and Ψ, are as follows: for a

colouring c : [N]n −→ 2 we let Φc : [N]n+1 −→ 2 be given by

Φc(x0, x1, . . . , xn) = c(x1 − x0, x2 − x0, . . . , xn − x0).

information from the concrete instance of the problem at hand (more concretely, in the notation explained below we
have that ΨX , rather than ΨX⊕Y , is already a solution to Y ). We are thankful to L. Carlucci for this observation.



4 B. ACEVES, D. FERNÁNDEZ, L. ROMERO, AND L. VILLAGÓMEZ

It is easily verified that Φc is Z-invariant. In the other direction, given an infinite set A ⊆ N, we let

ΨA = {x− x0
∣∣x ∈ A \ {x0}},

where x0 = min(A). If [A]n+1 is Φc-monochromatic (say, in colour i) then [ΨA]n is c-monochromatic

(in the same colour i), since for any elements x1 − x0, . . . , xn − x0 ∈ ΨA we have

c(x1 − x0, . . . , xn − x0) = Φc(x0, x1, . . . , xn) = i.

□

Since the statements RTn are equivalent for n ≥ 3 (and they are equivalent to ACA0), the only

interesting corollary, from the perspective of Reverse Mathematics, is the part where n ≤ 3.

Corollary 3. Over RCA0 we have:

(1) Z-RTn is equivalent to ACA0 for each n ≥ 4, and

(2) ACA0 ⇒ Z-RT3 ⇒ RT2 ⇒ Z-RT2 ⇒ RT1.

Later on, in the last section (and once we have more tools under our belt), we come back to whether

the first two arrows from part (2) of Corollary 3 are reversible.

2.1. Relation with the Adjacent Hindman’s Theorem. Let us begin by recalling Carlucci’s

adjacent Hindman’s theorem.

Definition 4. The adjacent Hindman’s theorem, denoted by AHT, is the statement that, for

every finite colouring c : N −→ k, there exists an infinite set X such that the set

AFS(X) = {xn + xn+1 + · · ·+ xn+l

∣∣n, l ∈ N}

is monochromatic, where the sequence (xn
∣∣n ∈ N) represents the (unique) increasing enumeration

of the set X.

Given that the set AFS(X) is defined in such a way that the order within our set matters (unlike

the usual FS sets utilized in Hindman’s theorem), one could conceivably state a version of the AHT

for sequences rather than sets, i.e. affirming the existence of a sequence (xn
∣∣n ∈ N), not necessarily



ADJACENT HINDMAN AND Z-RAMSEY 5

increasing (or even injective!) whose adjacent finite sums are monochromatic. However, it is readily

seen that these two versions of the AHT must be equivalent (whether from the viewpoint of Reverse

Mathematics over RCA0, or from the viewpoint of Computability Theory). Clearly the original

version as stated by Carlucci implies the “sequence” version (by replacing the set X with the

sequence that increasingly enumerates its elements); conversely, given an arbitrary sequence xn, one

can recursively define y1 = x1, k1 = 1; and yn+1 = xkn+1 + xkn+2 + · · ·+ xkn+1 , with kn+1 the least

number making the yn+1 thus defined to be strictly larger than yn. This way we obtain a strictly

increasing sequence (yn
∣∣n ∈ N) (in particular, we obtain a set Y whose increasing enumeration is

precisely the sequence of yn) such that AFS(Y ) = AFS(yn
∣∣n ∈ N) ⊆ AFS(xn

∣∣n ∈ N).

The following theorem is the observation that originally launched the work in this paper.

Theorem 5. Z-RT2 ≤u AHT and AHT ≤u Z-RT2.

Proof. For the first reducibility relation, we describe the corresponding Turing functionals Φ1,Ψ1

as follows. Given a Z-invariant colouring c : [N]2 −→ k, Φc
1 : N −→ k is defined by Φc

1(y) = c(0, y).

Note that the assumption that c is Z-invariant implies Φc
1(y) = c(x, x+ y) for every natural number

x. On the other hand, for any infinite set Y = {yn
∣∣n ∈ N} (where the indexing yn of the elements

of Y constitutes an increasing enumeration), we let ΨY
1 = {y1 + · · ·+ yn

∣∣n ∈ N}. For every pair of

elements of ΨY
1 , we have

c(y1 + · · ·+ yn, y1 + · · ·+ ym) = c(y1 + · · ·+ yn, (y1 + · · ·+ yn) + (yn+1 + · · ·+ ym))

= c(0, yn+1 + · · ·+ ym)

= Φc
1(yn+1 + · · ·+ ym).

Since numbers of the form yn+1 + · · ·+ ym are precisely the elements of AFS(Y ), the conclusion is

that AFS(Y ) is Φc
1-monochromatic if and only if [ΨY

1 ]
2 is c-monochromatic.

For the converse reducibility relation, we denote the relevant functionals by Φ2,Ψ2. Given a

d : N −→ k we let Φd
2 : [N]2 −→ k be given by Φd

2({x, y}) = d(y − x), whenever x < y; it is

readily seen that Φd
2 is a Z-invariant colouring. On the other hand, for an infinite set X, first

define recursively X ′ = {xn
∣∣n ∈ N} by letting x0, x1 be the two smallest elements of X, and

then we let each xn+1 be the least element of X so that xn+1 − xn > xn − xn−1. We then let
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ΨX
2 = {xn+1 − xn

∣∣n ∈ N}. Note that an element of AFS(ΨX
2 ) is of the form

(xn+1 − xn) + (xn+2 − xn+1) + · · ·+ (xn+k+1 − xn+k) = xn+k+1 − xn,

therefore if xn+k+1 − xn = y ∈ AFS(ΨX
2 ) then d(y) = d(xn+k+1 − xn) = Φd

2(xn, xn+k+1); so, if X is

Φd
2-monochromatic then AFS(ΨX

2 ) is d-monochromatic. □

Note that the previous proof, in a sense, shows that Z-invariant colourings are precisely those

colourings that depend only on the distance between the two elements of the pair being coloured.

Of course, we now have the following corollary, whose proof consists of carefully carrying out the

previous proof within Recursive Arithmetic.

Corollary 6. Over RCA0, AFS is equivalent to Z-RT2.

3. Adjacent Hindman’s theorem in higher dimensions.

We now proceed to study a higher-dimensional version of the Adjacent Hindman’s Theorem, much in

the same spirit that the Milliken–Taylor theorem constitutes a two-dimensional version of the usual

Hindman’s theorem. Recall that the Milliken–Taylor theorem ensures that, given any colouring of

pairs of finite subsets of N, there exists a pairwise disjoint family such that all ordered pairs of finite

unions have the same colour. In the adjacent context, we will have to consider adjacent pairs of

adjacent finite unions, and similarly for higher dimensions.

Definition 7.

(1) Let x⃗ = ⟨xn
∣∣n ∈ N⟩ be a sequence of natural numbers, and let d ∈ N \ {0}. We define the

set of adjacent d-tuples of adjacent sums from x⃗ to be the set

AFSd(x⃗) =


 k1∑

k=k0

xk,

k2∑
k=k1+1

xk, . . . ,

kd∑
k=kd−1+1

xk

∣∣∣∣k0 ≤ k1 < k2 < · · · < kd


(2) We define the d-Adjacent Hindman’s Theorem, denoted AHTd, to be the statement that

for every colouring d : Nd −→ k there exists an infinite set Y ⊆ N such that, if y⃗ = ⟨yn
∣∣n ∈ N⟩

is the increasing enumeration of Y , then the set AFSd(y⃗) is d-monochromatic.
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Just as in the case of the 1-dimensional adjacent Hindman’s theorem, AHTd for d > 1 could be

phrased directly in terms of sequences, and we would still obtain an equivalent statement. The

following is the generalization of Theorem 5 to this context.

Theorem 8. For each d ∈ N \ {0}, we have Z-RTd+1 ≤u AHTd and AHTd ≤u Z-RTd+1.

Proof. The Turing functionals Φ1,Ψ1 witnessing that Z-RTd+1 ≤u AHTd are: for a Z-invariant

colouring c : [N]d+1 −→ k, we let Φc
1 : Nd −→ k be given by

Φc
1(y1, . . . , yd) = c(0, y1, y1 + y2, . . . , y1 + y2 + · · ·+ yd).

On the other hand, given an infinite set Y = {yn
∣∣n ∈ N}, enumerated increasingly, let ΨY

1 =

{y1 + · · ·+ yn
∣∣n ∈ N}. Now, if x0, . . . , xd ∈ ΨY

1 are distinct elements, with x0 < · · · < xd, then we

have xi = y1 + · · ·+ yki for each i, with k0 < k2 < · · · < kd. Then, by the Z-invariance of c we have

c(x0, . . . , xd) = c(0, x1 − x0, x2 − x0, . . . , xd − x0)

= c(0, z1, z1 + z2, . . . , z1 + z2 + · · ·+ zd)

= Φc
1(z1, z2, . . . , zd),

where we have defined zi = xi − xi−1 = yki−1+1 + · · ·+ yki . So the values of c on (d+ 1)-tuples from

ΨY
1 are exactly the values of Φc

1 on d-tuples from Y that have the form

(yk0+1 + · · ·+ yk1 , yk1+1 + · · ·+ yk2 , · · · , ykd−1+1 + · · ·+ ykd),

which are precisely the elements of AFSd(Y ). Hence ΨY
1 is c-monochromatic if and only if Y is

Φc
1-monochromatic.

Now, to prove AHTd ≤u Z-RTd+1, the witnessing Turing functionals will be Φ2,Ψ2 defined as follows:

for d : Nd −→ k we let Φd
2 : [N]d+1 −→ k be given by Φd

2(x0, . . . , xd) = d(x1−x0, x2−x1, . . . , xd−xd−1)

(if x1 < . . . < xd+1); it is easy to see that Φd
2 is a Z-invariant colouring. For the definition of Ψ2

we proceed as in the proof of theorem 5: given an infinite set X, first define X ′ = {xn
∣∣n ∈ N}

such that x0, x1 are the two smallest elements of X, and xn+1 is the least element of X so that

xn+1 − xn > xn − xn−1 for each n ≥ 1. We then let ΨX
2 = {xn+1 − xn

∣∣n ∈ N}. Note that, if
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yj = xj+1 − xj , then an element y⃗ ∈ AFSd(ΨX
2 ) is of the form

y⃗ = (yi0 + · · ·+ yi1−1, yi1 + · · ·+ yi2−1, . . . , yid−1
+ · · ·+ yid−1)

= (xi1 − xi0 , xi2 − xi1 , . . . , xid − xid−1
),

so that d(y⃗) = Φd
2(x0, . . . , xd) and hence, if [X]n+1 is Φd

2-monochromatic this implies that AFS(ΨX
2 )

is d-monochromatic. □

As clearly as always, this leads also to the following.

Corollary 9. For each d, the statements Z-RTd+1 and AHTd are equivalent over RCA0.

3.1. The apartness condition. In Carlucci’s paper [2] (where the original formulation of the AHT

can be found), a version of the AHT is considered where one requires an apartness condition on the

generators of the monochromatic set. In order to understand this requirement, recall that given an

x ∈ N one defines λ(x) to be the unique n such that 2n | x but 2n+1 ∤ x; on the other hand, one

defines µ(x) = ⌊log2(x)⌋. Pictorially, it is easier to remember that, when expressing x in binary

notation, λ(x) provides the position of the first non-zero digit and µ(x) is the position of the last

(non-zero) digit (first and last meaning from lower to higher powers of 2 —i.e., when reading the

number from right to left); even more intuitively, one can simply think of the natural number n

as a finite subset of N (by letting the binary expansion of n represent the characteristic function

of such finite subset) and then λ(n), µ(n) are simply the minimum and maximum elements of this

finite set.

Definition 10. A sequence ⟨xn
∣∣n ∈ N⟩ is said to satisfy the apartness condition if, for every n ∈ N,

we have µ(xn) < λ(xn+1).

The reader familiar with the definition of a block sequence on [N]<ℵ0 will recognize that a sequence

of natural numbers satisfies the apartness condition precisely when the finite sets corresponding

to the elements of the sequence (as described in the previous paragraph) form a block sequence.

Carlucci’s adjacent Hindman’s theorem with apartness is the principle stating the same as AHT but

requiring that the sequence whose set of adjacent finite sums is monochromatic satisfy the apartness
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condition; we will henceforth denote this principle with the symbol AHTa. We similarly define the

higher-dimensional versions AHTd
a for each d.

Recall the proof of Theorem 5. Looking at the definitions of the relevant Turing functionals Ψ1,Ψ2,

the reader will notice that, if the infinite set Y = {yn
∣∣n ∈ N} satisfies the apartness condition,

then the set ΨY
1 will have an increasing enumeration {xn

∣∣n < N} satisfying µ(xn − xn−1) <

λ(xn+1 − xn). Conversely, given an infinite set X = {xn
∣∣n < N} (increasing enumeration) satisfying

µ(xn − xn−1) < λ(xn+1 − xn), then the set ΨX
2 , as defined in the proof of Theorem 5, which is

simply {xn+1 − xn
∣∣n ∈ N} (note that, in this case, the auxiliary subset X ′ ⊆ X is simply X

itself), will satisfy the apartness condition. This motivates the following definition of a condition

that is to versions of Ramsey’s theorem what the apartness condition is to versions of Hindman’s

theorem.

Definition 11.

(1) A sequence ⟨xn
∣∣n ∈ N⟩ is said to satisfy the separation condition if, for every n ∈ N, we

have µ(xn − xn−1) < λ(xn+1 − xn).

(2) Given an n ∈ N, the Z-Ramsey theorem for n-tuples with separation is the statement

that every Z-invariant colouring of n-tuples admits an infinite monochromatic set that, when

enumerated increasingly, yields a sequence satisfying the separation condition. We denote

this principle with the symbol Z-RTn
s .

Clearly, Z-RTn
s implies Z-RTn in RCA0 or, in terms of uniform reducibility, we have Z-RTn ≤ Z-RTn

s

(intuitively, requiring the separation condition in the monochromatic set makes the corresponding

statement stronger). Looking carefully (whether literally as Computability statements, or as proofs

in RCA0) at the proofs from Theorem 8 (as described two paragraphs above but now in this more

general context), yields the following.

Theorem 12.

(1) Z-RTd+1
s ≤u AHTd

a and AHTd
a ≤u Z-RTd+1

s ,

(2) for each d, the statements Z-RTd+1
s and AHTd

a are equivalent over RCA0.
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For a relationship between the versions of Z-RT with or without the separation condition (or,

equivalently, between the versions of AHT with or without apartness), Carlucci [2] proves that RT2

implies AHTa. Using essentially the same reasoning, we prove the higher-dimensional general version

of this result.

Theorem 13. For each n ∈ N, we have AHTn
a ≤u RTn+1.

Proof. Consider the Turing functionals Φ and Ψ given as follows: for a colouring c : [N]n −→ k, let

Φc : [N]n+1 −→ k be given by

Φc(x0, . . . , xn) = c(2x1+2x1+1+ · · ·+2x2−1, 2x2+2x2+1+· · ·+2x3−1, . . . , 2xn−1+2xn−1+1+ · · ·+2xn).

On the other hand, given a Y = {yn
∣∣n ∈ N} enumerated increasingly, let

ΨY = {2yn + 2yn+1 + · · ·+ 2yn+1
∣∣n ∈ N}.

Then [Y ]n+1 is Φc-monochromatic if and only if AFSn(ΨY ) is c-monochromatic. □

This way, we obtain the following diagram, where the arrows can mean either implication under

RCA0, or uniform reducibility (of the item to the right of the arrow to the item to the left of it)

· · · +3 Z-RTn+1
s

+3
KS

��

Z-RTn+1 +3
KS

��

RTn +3 Z-RTn
s

+3
KS

��

Z-RTn +3
KS

��

RTn−1 +3 · · ·

· · · AHTn
a

+3 AHTn AHTn−1
a

+3 AHTn−1 · · ·

Towards the right-extreme of this diagram (which extends infinitely to the left), we find the following

configuration:

· · · +3 RT3 +3 Z-RT3
s

+3
KS

��

Z-RT3 +3
KS

��

RT2 +3 Z-RT2
s

+3
KS

��

Z-RT2 +3
KS

��

RT1
KS

��
· · · AHT2

a
+3 AHT2 AHTa

+3 AHT pigeonhole
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This is very informative from the perspective of uniform reducibility. From the perspective of

Reverse Mathematics, on the other hand, a huge portion of the diagram collapses, since it is known

that RT3 already implies ACA0. Therefore, the first diagram consists of equivalent statements, and

the only question remaining should be regarding the second diagram. The next (and last) section of

the paper addresses this question.

4. A lower bound and questions.

In this section, we show that AHT2 implies ACA0 over RCA0. Thus, the leftmost five nodes of the

last shown diagram collapse, all of them being equivalent, and really the only point of separation

happens in the arrow connecting Z-RT3 to RT2. The following result, stated in both the language

of Computability Theory and of Reverse Mathematics, is proved with much the same ideas as the

classical proof that RT3 implies ACA0.

Theorem 14.

(1) There exists a computable instance of AHT2 whose solutions compute 0′.

(2) Over RCA0, AHT
2 (equivalently, Z-RT3) implies ACA0.

Proof. Consider the colouring c : N2 −→ 2 × 2 given by letting c(x, y) = (i, j), where i equals

1 if and only if λ(x) < λ(y), and j equals 1 if and only if (0′ ∩ λ(x))[µ(x)] = (0′ ∩ λ(x))[µ(y)].

Suppose that x⃗ = (xn
∣∣n ∈ N) is a sequence such that AFS2(x⃗) is c-monochromatic. Let n0 be such

that λ(xn0) is as small as possible. Comparing λ(xn0) with λ(xn0+1) and λ(xn0+2), we see that

either λ(xn0) < λ(xn0+1), or λ(xn0+1) < λ(xn0+2), or λ(xn0) = λ(xn0+1) = λ(xn0+2) which implies

λ(xn0) < λ(xn0+1 + xn0+2). In either case, we have obtained an element of AFS2(x⃗) whose colour is

of the form (1, j); hence all elements of AFS2(x⃗) have the same colour and so λ is strictly increasing

on the sequence x⃗. In particular, this implies that λ(xn + xn+1 + · · ·+ xn+l) = λ(xn) for all n, l.

Therefore, for any n it is possible to take an l large enough that (0′ ∩ λ(xn))[µ(x)] = 0′ ∩ λ(xn) for

x = xn + xn+1 + · · ·+ xn+l; then any element of AFS2(x⃗) having x as its first coordinate will have

colour (1, 1). This implies that for every n ∈ N we have (0′ ∩λ(xn))[µ(xn)] = 0′ ∩λ(xn) —otherwise,

taking any t large enough that (0′ ∩ λ(xn))[µ(y)] = 0′ ∩ λ(xn) for y = xn+1 + . . .+ xn+t, we would

obtain the element (xn, y) ∈ AFS2(x⃗) with colour (1, 0)—. In other words, the sequence x⃗n is able
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ACA0
+3

KS

��

RT2 +3 Z-RT2
s

+3
KS

��

Z-RT2 +3
KS

��

RT1
KS

��
Z-RT3 AHTa

+3 AHT pigeonhole

Figure 1. Diagram of implications over RCA0.

to compute 0′ (given any m ∈ N, take an n large enough that λ(xn) > m and check whether m

belongs to (0′ ∩ λ(xn))[µ(xn)]). □

We summarize the results of the paper, from the perspective of Reverse Mathematics, by presenting

the diagram in Figure 1. Whether any of the remaining arrows (except for the one connecting ACA0

to RT2) is reversible remains an open question. For example, it is conceivable that AHT already

implies AHTa, although some ideas that have been used for similar results (e.g. [6, Lemma 1]) do not

seem to work in this context because the requirement that the sums be adjacent, thus preventing

us to skip summands, poses a strong restriction. Similar difficulties arise when one attempts to

obtain better lower bounds for Z-RT2: Carlucci [2, Prop. 3] has found that the Increasing Polarized

Ramsey’s Theorem for pairs2, denoted IPT2, is a lower bound for AHTa; the apartness condition

plays a crucial rôle in Carlucci’s proof, and we have been unable to successfully find a suitable

lower bound for AHT without this condition. We do have a conjecture but state it in the form of a

question below. A final consideration arises from thinking about versions of the principles we have

stated for a bounded number of colours. For example, one could consider, e.g., the principle AHTk

which states the same as AHT but only for colourings with at most k colours. Note that, from this

viewpoint, Theorem 14 really proves that Z-RT3
4 implies ACA0, but it is not clear whether that 4

could be lowered even further. We finalize the paper by stating explicitly these questions.

Questions 15.

(1) Does Z-RT2 (equivalently, AHT) imply Z-RT2
s (equivalently, AHTa)?

(2) Can one prove, under RCA0 (or possibly under RCA0+BΣ0
2) that AHT (equivalently, Z-RT2)

imply D2?

2That is, the statement that for every colouring c : [N]2 −→ k there are two infinite sets X,Y such that all pairs of
the form {x, y} with x ∈ X, y ∈ Y , and x < y, have the same colour.
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(3) What are the provable implication relations between the different “bounded colour” versions

of AHTn
k , for various k (equivalently for Z-RTn

k , for various k)?

The principle D2 mentioned in point (2) of Questions 15 is the statement, as considered in [3], that

for every stable c : [N]2 −→ k (where “stable” means for each n, the function m 7−→ c({n,m}) is

eventually constant) there exists an infinite set X ⊆ N and a colour i < k such that for each n ∈ X,

we have lim
m→∞

c({n,m}) = i; this statement is weaker than IPT2 ⇒ D2 by a result of Dzhafarov

and Hirst [3]. On the other hand, regarding point (3) of Questions 15, it is worth noting that D.

Tavernelli [10, Section 2.3] has obtained results showing that the versions of AHT with more colours

are not Weihrauch-reducible to the versions with fewer colours, although this still leaves open the

possibility of having some version of AHT with more colours being provable (over RCA0, or maybe

over RCA0 + BΣ0
2) from another version with fewer colours.
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