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Ramsey Theory Ramsey’s and Schur’s theorem

Ramsey’s theory slogan: “Total chaos is impossible”.

Theorem

If |X| ≥ 6, and c : [X]2 −→ 2, then there are distinct x, y, z ∈ X such that

Theorem (Ramsey, 1930)

If X is infinite, and c : [X]2 −→ 2, then there is an infinite Y ⊆ X such that
[Y ]2 is monochromatic.

Theorem (Schur, 1912)

If c : N −→ 2, then there are distinct x, y ∈ N such that {x, y, x+ y} is
monochromatic.
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Ramsey Theory Folkman–Rado–Sanders’s and Hindman’s theorem

Theorem (Folkman–Rado–Sanders, 1969)

If c : N −→ 2, then there are distinct x, y, z ∈ N such that
{x, y, z, x+ y, y + z, x+ z, x+ y + z}
is c-monochromatic.

Theorem (Hindman, 1974)

If c : N −→ 2, then there is an infinite subset Y ⊆ N such that FS(Y ) is
c-monochromatic.

Theorem

If c : [N]<ω −→ 2, then there is an infinite, pairwise disjoint family Y ⊆ [N]<ω

such that FU(Y ) =

{
F1 ∪ · · · ∪ Fn

∣∣∣∣n ∈ N and F1, . . . , Fn ∈ Y
}

is

c-monochromatic.
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Hindman’s theorem as a Choice Principle Statement of HT

Definition

If c : [N]<ω −→ 2, then there is an infinite, pairwise disjoint family Y ⊆ [N]<ω

such that FU(Y ) =

{
F1 ∪ · · · ∪ Fn

∣∣∣∣n ∈ N and F1, . . . , Fn ∈ Y
}

is

c-monochromatic.

Thus, the theory ZF+ HT is (a priori) a weaker theory than ZFC.
The question is, is it really weaker? If so, how much?
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Hindman’s theorem as a Choice Principle Some easy facts

Recall that a set is Dedekind-infinite if it is equipotent to a proper subset.

Equivalently (over ZF), if ω injects into it.

The statement “every infinite set is Dedekind-infinite” is a classical Choice
Principle (abbreviated Fin=D-Fin).

Another classical Choice Principle is König’s Lemma (abbreviated KL),
equivalent to the Axiom of Choice for countable families of nonempty finite
sets.

Theorem
In ZF, HT is equivalent to the statement: every infinite set X satisfies that
[X]<ω is Dedekind-infinite.

Corollary

In ZF, the conjunction of KL and HT is equivalent to Fin=D-Fin.
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Hindman’s theorem as a Choice Principle Other classical Choice Principles

Other classical Choice Principles:

The Axiom of Countable Choice (CC),

The Axiom of Dependent Choice (DC),

The Boolean Prime Ideal theorem (BP),

The Ordering Principle (OP),

Howard–Rubin’s Form 82: “For every infinite set X, ℘(X) is
Dedekind-infinite”,

Ramsey’s theorem (RT): “For every infinite set X, for every colouring
c : [X]2 −→ 2, there exists an infinite Y ⊆ X such that [Y ]2 is
monochromatic”.
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Hindman’s theorem as a Choice Principle Implication relationships between the various Choice Principles
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Independence proofs The theory ZFA

Definition
The theory ZFA is a first-order theory

with non-logical symbols ∈, A,∅,
equipped with the axioms:

1 (∀x)(x /∈ ∅).
2 (∀x 6= ∅)(x ∈ A ⇐⇒ ¬(∃y)(y ∈ x)).
3 Every axiom of ZF, appropriately adapted to deal with atoms

(for example, Extensionality becomes
(∀x, y)(x, y /∈ A⇒ ((x ⊆ y) ∧ (y ⊆ x)⇒ x = y))).

If π is a permutation of A, then π induces an automorphism of the universe by
means of the formula:

π(x) = {π(y)
∣∣y ∈ x}.

Observe that each of these automorphisms π fixes every pure set
(that is, every set x such that trcl(x) ∩A = ∅).
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Independence proofs Normal filters of subgroups, symmetric sets

We work in a model of ZFA+ AC.

Definition

Let G ≤ Sym(A). F is a normal filter of subgroups on G if
1 Every element of F is a subgroup of G,
2 F is closed under (finite) intersections,
3 if H,K ≤ G and H ∈ F , then K ∈ F ,
4 for each a ∈ A, {π ∈ G

∣∣π(a) = a} ∈ F ,
5 If H ∈ F and π ∈ G, then πHπ−1 ∈ F .

Definition
A set x is symmetric (relative to A,G,F ) if, for some H ∈ F , x is the union of
H-orbits.
Equivalently, x is symmetric if there is an H ∈ F such that
(∀π ∈ H)(π(x) = x).
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Independence proofs Fränkel–Mostowski models

Definition
The Fränkel–Mostowski model

determined by A,G,F is the class

M(A,G,F ) = {x
∣∣x is hereditarily symmetric}.

Theorem (Fränkel, Mostowski)

If G ≤ Sym(A) and F is a normal filter of subgroups, then

M(A,G,F ) � ZFA.

Theorem (Jech–Sochor, Pincus)

Let ϕ be a “reasonable” statement. If there exists a Fränkel–Mostowski model
M(A,G,F ) satisfying ϕ, then there exists a model of ZF+ ϕ.
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Independence proofs RT does not imply HT

Theorem
ZF 6` RT⇒ HT.

Proof: Let A be countable, G = Sym(A), and F consist of all groups that
contain some GF = {π ∈ G

∣∣π � F = Id � F}, with F ∈ [A]<ω.
Ramsey’s theorem holds: (Blass, 1977)

Hindman’s theorem fails:
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Independence proofs HT does not imply RT

Theorem
ZF 6` HT⇒ RT.

Proof: Let A be written as a countable disjoint union A =
⋃

n<ω Pn, with each
|Pn| = 2, let G = {π ∈ Sym(A)

∣∣(∀n < ω)(π[Pn] = Pn)}, and let F consist of all
groups that contain some Gn = {π ∈ G

∣∣π �
⋃n−1

i=0 Pi = Id �
⋃n−1

i=0 Pi}, for
n < ω.
Hindman’s theorem holds:

Ramsey’s theorem fails:
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Independence proofs Form 82 does not imply HT

Theorem
ZF 6` Form 82⇒ HT.

Proof: Let |A| = c, and let f 7−→ af be a bijection : ωω −→ A. Let
G = {π ∈ Sym(A)

∣∣(∃ isometry ϕ : ωω −→ ωω)(∀af ∈ A)(π(af ) = aϕ(f))}, and
let F consist of all subgroups of the form
Gn,F = {πϕ

∣∣(∀f ∈ ωω)(ϕ(f) � n = f � n) ∧ (ϕ � F = Id � F )}, with n < ω and
F ∈ [ωω]<ω.
Form 82 holds:

Hindman’s theorem fails:
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The paper

HINDMAN’S THEOREM IN THE

HIERARCHY OF CHOICE PRINCIPLES

DAVID FERNÁNDEZ-BRETÓN

1. Introduction

We deal with various versions of Ramsey’s and Hindman’s theorem. For
notation, RTn

k means Ramsey’s theorem for n-tuples and k colours, and
HTn(k) means Hindman’s theorem for at most n summands and k colours.
Simply writing HT(k) means the full, unrestricted Hindman’s theorem for
k colours. For a fixed k, it follows1 from [2, Theorem 3.2] that HT(k) is
equivalent to HTn(k) whenever n ≥ 4, and HT(k) ⇒ HT3(k) ⇒ HT2(k).
Also, by [2, Theorem 3.8], we have RT2

k ⇒ HT2(k).

Forster and Truss [3, Lemma 2.2] proved that, for each fixed n, all of the
statements RTn

k are equivalent, and so from now on we will drop the subscript
and only refer to the statements RTn. These authors [3, Theorem 2.3] also
establish that, if n ≤ m, then RTm ⇒ RTn. It would be interesting to show
that these implications are not reversible (and we will attempt to do so
by playing with the Random-hypergraph models). It is worth mentioning
that the statement RT2 appears in [4] as Form 17, whereas the statement
(∀n)(RTn) is Form 325.

For the moment, at least we can establish the analog of the aforementioned
result (being able to forget colours) for Hindman’s theorem. Is there a
better result? (One that works even for versions of Hindman’s theorem with
restricted number of summands.) For a moment there I thought I had it,
but now I’m not so sure –so think about this!!!–

Proposition 1. All of the statements HT(k), as k varies, are equivalent.

Proof. Since k-colourings are always also k�-colourings whenever k ≤ k�, we
have that HT(k�) ⇒ HT(k) under these circumstances. Now to finish the
proof, we need only show that HT(k) ⇒ HT(k + 1) for k ≥ 2 (which yields
an argument by induction). So suppose that k ≥ 2 and that HT(k) holds.
Let X be an infinite set and let c : [X]<ω −→ k + 1 be a colouring. Define
another colouring d : [X]<ω −→ k by letting d(x) = min{c(x), k − 1}. Using
HT(k) we obtain an infinite pairwise disjoint family Y ⊆ [X]<ω such that
FU(Y ) is monochromatic for d, say on colour i < k. If i < k − 1 then FU(Y )

1In the two references that follow, what was really proved is the case k = 2, but it is
clear from a cursory reading of the proof that this can be adapted to any k.

1

Thanks!

D. Fernández (IM–UNAM) Hindman’s theorem, a choice principle BEST 2021 14 / 14



The paper

Thanks!

D. Fernández (IM–UNAM) Hindman’s theorem, a choice principle BEST 2021 14 / 14



The paper The pre-quel

Annals of Pure and Applied Logic 172 (2021) 102961

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Finiteness classes arising from Ramsey-theoretic statements in set 

theory without choice

Joshua Brot a, Mengyang Cao a,1, David Fernández-Bretón a,b,c,∗,2

a Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 
48109-1043, USA
b Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Austria
c Departamento de Matemáticas, Centro de Investigación y Estudios Avanzados, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2020
Received in revised form 14 
December 2020
Accepted 14 February 2021
Available online 25 February 2021

MSC:
primary 03E25
secondary 03E30, 03E35, 03E75

Keywords:
Fraenkel–Mostowski model
Axiom of choice
Dedekind-finite set
Amorphous set
Ramsey’s theorem
Hindman’s theorem

We investigate infinite sets that witness the failure of certain Ramsey-theoretic 
statements, such as Ramsey’s or (appropriately phrased) Hindman’s theorem; such 
sets may exist if one does not assume the Axiom of Choice. We obtain very 
precise information as to where such sets are located within the hierarchy of infinite 
Dedekind-finite sets.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A very interesting line of research in choiceless set theory consists of exploring the relations between 
the various different ways of expressing finiteness of a set. The starting point for this vein of research 
is the observation that Dedekind’s definition of an infinite set [9, Definition 64, p. 63], which in normal 
circumstances (i.e. when one assumes the Axiom of Choice, which will henceforth be denoted by AC) is 

* Corresponding author.
E-mail addresses: jbrot@umich.edu (J. Brot), mengyangcao2020@u.northwestern.edu (M. Cao), djfernandez@im.unam.mx

(D. Fernández-Bretón).
URL: http://homepage.univie.ac.at/david.fernandez-breton/ (D. Fernández-Bretón).

1 Current address: Northwestern University, 633 Clark St, Evanston, IL 60208, USA.
2 Current address: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la Investigación Científica, 

Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, CDMX, Mexico.

https://doi.org/10.1016/j.apal.2021.102961
0168-0072/© 2021 Elsevier B.V. All rights reserved.

Thanks!

D. Fernández (IM–UNAM) Hindman’s theorem, a choice principle BEST 2021 14 / 14



The paper The pre-quel

Annals of Pure and Applied Logic 172 (2021) 102961

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Finiteness classes arising from Ramsey-theoretic statements in set 

theory without choice

Joshua Brot a, Mengyang Cao a,1, David Fernández-Bretón a,b,c,∗,2

a Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 
48109-1043, USA
b Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Austria
c Departamento de Matemáticas, Centro de Investigación y Estudios Avanzados, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2020
Received in revised form 14 
December 2020
Accepted 14 February 2021
Available online 25 February 2021

MSC:
primary 03E25
secondary 03E30, 03E35, 03E75

Keywords:
Fraenkel–Mostowski model
Axiom of choice
Dedekind-finite set
Amorphous set
Ramsey’s theorem
Hindman’s theorem

We investigate infinite sets that witness the failure of certain Ramsey-theoretic 
statements, such as Ramsey’s or (appropriately phrased) Hindman’s theorem; such 
sets may exist if one does not assume the Axiom of Choice. We obtain very 
precise information as to where such sets are located within the hierarchy of infinite 
Dedekind-finite sets.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A very interesting line of research in choiceless set theory consists of exploring the relations between 
the various different ways of expressing finiteness of a set. The starting point for this vein of research 
is the observation that Dedekind’s definition of an infinite set [9, Definition 64, p. 63], which in normal 
circumstances (i.e. when one assumes the Axiom of Choice, which will henceforth be denoted by AC) is 

* Corresponding author.
E-mail addresses: jbrot@umich.edu (J. Brot), mengyangcao2020@u.northwestern.edu (M. Cao), djfernandez@im.unam.mx

(D. Fernández-Bretón).
URL: http://homepage.univie.ac.at/david.fernandez-breton/ (D. Fernández-Bretón).

1 Current address: Northwestern University, 633 Clark St, Evanston, IL 60208, USA.
2 Current address: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la Investigación Científica, 

Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, CDMX, Mexico.

https://doi.org/10.1016/j.apal.2021.102961
0168-0072/© 2021 Elsevier B.V. All rights reserved.

Thanks!
D. Fernández (IM–UNAM) Hindman’s theorem, a choice principle BEST 2021 14 / 14


	Ramsey Theory
	Ramsey's and Schur's theorem
	Folkman–Rado–Sanders's and Hindman's theorem

	Hindman's theorem as a Choice Principle
	Statement of HT
	Some easy facts
	Other classical Choice Principles
	Implication relationships between the various Choice Principles

	Independence proofs
	The theory ZFA
	Normal filters of subgroups, symmetric sets
	Fränkel–Mostowski models
	RT does not imply HT
	HT does not imply RT
	Form 82 does not imply HT

	
	


