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c-monochromatic.

Ifc: N — 2, then there is an infinite subsetY C N such that FS(Y) is

suchthatFU(Y)=<F,U---UF,

If ¢ : [N]<¥ — 2, then there is an infinite, pairwise disjoint family Y C [N]<“
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We define Hindman’s theorem, denoted HT, to be the following statement:
Let X be an infinite set.
If ¢: [X]<¥ — 2, then there is an infinite, pairwise disjoint family Y C [X]<¥

such that FU(Y) = {Flu---UFnneNandFl,...,Fn EY} is

c-monochromatic.

Thus, the theory ZF + HT is (a priori) a weaker theory than ZFC.
The question is, is it really weaker? If so, how much?
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Recall that a set is Dedekind-infinite if it is equipotent to a proper subset.
Equivalently (over ZF), if w injects into it.

The statement “every infinite set is Dedekind-infinite” is a classical Choice
Principle (abbreviated Fin=D-Fin).

Another classical Choice Principle is Kénig’s Lemma (abbreviated KL),
equivalent to the Axiom of Choice for countable families of nonempty finite
sets.

In ZF, HT is equivalent to the statement: every infinite set X satisfies that
[X]<v is Dedekind-infinite.

In ZF, the conjunction of KL and HT is equivalent to Fin=D-Fin. I
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Other classical Choice Principles:

@ The Axiom of Countable Choice (CC),
@ The Axiom of Dependent Choice (DC),
@ The Boolean Prime Ideal theorem (BP),
@ The Ordering Principle (OP),

@ Howard—Rubin’s Form 82: “For every infinite set X, p(X) is
Dedekind-infinite”,

@ Ramsey’s theorem (RT): “For every infinite set X, for every colouring
c: [X]? — 2, there exists an infinite Y C X such that [Y]? is
monochromatic”.
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Fin = D-Fin

RT

Form 82 KL
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HT\ RT
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The theory ZFA is a first-order theory with non-logical symbols €, A, &,
equipped with the axioms:
Q@ (Va)(z ¢ 2).
Q Vz#£02)(zreA <~ —(Iy)(y € x)).
© Every axiom of ZF, appropriately adapted to deal with atoms
(for example, Extensionality becomes
(Vz,y)(z,y ¢ A= (( Cy) Ay Cz) =z =y))).

If 7 is a permutation of A, then 7 induces an automorphism of the universe by
means of the formula:

m(z) = {r(y)|y € z}.

Observe that each of these automorphisms = fixes every pure set
(that is, every set « such that trcl(z) N A = ©).




We work in a model of ZFA + AC.




We work in a model of ZFA + AC.

Let G < Sym(A).




We work in a model of ZFA + AC.

N Ll " rer of sobgrowps symmetieses.
Let G < Sym(A). .# is a normal filter of subgroups on G if

Hindman’s theorem, a choice principle




We work in a model of ZFA + AC.

Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,




We work in a model of ZFA + AC.

Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,
@ .7 is closed under (finite) intersections,




We work in a model of ZFA + AC.

Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,
@ .7 is closed under (finite) intersections,
Q@ ifH,K<Gand H € #,then K € .7,




We work in a model of ZFA + AC.

Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,
@ .7 is closed under (finite) intersections,
Q@ ifH,K<Gand H € #,then K € .7,
Q foreacha € A, {7 € G|n(a) =a} € Z,




We work in a model of ZFA + AC.

Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,

@ .7 is closed under (finite) intersections,

Q@ ifH,K<Gand H € #,then K € .7,

Q foreacha € A, {7 € G|n(a) =a} € Z,

Q@IfHec Zandr e G, thentHr ! € 7.




We work in a model of ZFA + AC.

Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,

@ .7 is closed under (finite) intersections,

Q@ ifH,K<Gand H € #,then K € .7,

Q foreacha € A, {7 € G|n(a) =a} € Z,

Q@IfHec Zandr e G, thentHr ! € 7.

A set x is symmetric




We work in a model of ZFA + AC.

Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,

@ .7 is closed under (finite) intersections,

Q@ ifH,K<Gand H € #,then K € .7,

Q foreacha € A, {7 € G|n(a) =a} € Z,

Q@IfHec Zandr e G, thentHr ! € 7.

A set x is symmetric (relative to A, G, )




We work in a model of ZFA + AC.

Definon
Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,
@ .7 is closed under (finite) intersections,
Q@ ifH,K<Gand H € #,then K € .7,
Q foreacha € A, {7 € G|n(a) =a} € Z,
Q@IfHec Zandr e G, thentHr ! € 7.

A set x is symmetric (relative to A, G, %) if, for some H € %, x is the union of
H-orbits.




We work in a model of ZFA + AC.

Definon
Let G < Sym(A). .# is a normal filter of subgroups on G if
@ Every element of .# is a subgroup of G,
@ .7 is closed under (finite) intersections,
Q@ ifH,K<Gand H € #,then K € .7,
Q foreacha € A, {7 € G|n(a) =a} € Z,
Q@IfHec Zandr e G, thentHr ! € 7.

A set x is symmetric (relative to A, G, %) if, for some H € %, x is the union of
H-orbits.

Equivalently, = is symmetric if there is an H € .% such that
(Vm € H)(n(z) = z).
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The Frdnkel-Mostowski model determined by A, G, .7 is the class

M(A, G, F) = {z|z is hereditarily symmetric}.

If G < Sym(A) and .7 is a normal filter of subgroups, then

M(A,G, F) E ZFA.

Let ¢ be a “reasonable” statement. If there exists a Frankel-Mostowski model
M(A, G, F) satisfying o, then there exists a model of ZF + .
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i can be k.
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