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Abstract. In the context of ZF, we analyze a version of Hindman’s finite unions theorem on infinite
sets, which normally requires the Axiom of Choice to be proved. We establish the implication
relations between this statement and various classical weak choice principles, thus precisely locating
the strength of the statement as a weak form of the AC.

1. Introduction

One of the central results of infinitary (countable) Ramsey theory is the so-called Hindman’s
finite sums theorem [9], stating that for every finite partition of N it is possible to find elements
x1 < · · · < xn < · · · such that all sums of finitely many of the xi, with no repetitions, are contained
in the same cell of the partition. An extremely close result in a similar vein, which was in fact
already known to be equivalent to Hindman’s finite sums theorem before the latter was proved,
is the statement that for every partition of the set [N]<ω of all finite subsets of N, one can find
infinitely many pairwise disjoint sets such that all unions of finitely many of them are contained
within the same cell of the partition. Upon replacing N with an arbitrary set X in the latter result,
one obtains a statement that, while provable in ZFC, may potentially not be a theorem of ZF. This
statement is what we will refer to as Hindman’s theorem in this paper, and it will be our central
object of study.

Definition 1.1. Hindman’s theorem, denoted HT, is the statement that, for every infinite set X
and for every colouring c : [X]<ω −→ 2 of the finite powerset of X with two colours, there exists an
infinite, pairwise disjoint family Y ⊆ [X]<ω such that the set

FU(Y ) =

⋃
y∈F

y

∣∣∣∣F ∈ [Y ]<ω \ {∅}


is c-monochromatic.

(We prove later, in Proposition 2.1, that we obtain an equivalent statement, modulo ZF, if we vary
the number of colours in the colouring, so long as said number remains finite.) It follows from
Hindman’s finite unions theorem over N that HT is a theorem of ZFC (by simply embedding N
into any infinite set X and restricting any colouring of [X]<ω); however, it turns out that one
cannot prove HT in ZF only. Hence, one can think of the statement HT as a weak form of the
Axiom of Choice, and it thus makes sense to try and compare this choice principle with other
classical choice principles that have been extensively studied, investigating the implication relations
(modulo ZF) that there are between them. It is worth noting that HT is a very natural choice
principle not only due to its origins in Ramsey theory, but also in light of some results presented
in this paper, e.g., Proposition 2.3, stating that the conjunction of HT and König’s Lemma is
equivalent to the statement that every infinite set is Dedekind-infinite (and therefore, the latter is
also equivalent to the conjunction of HT and Ramsey’s theorem). It is also worth noting that HT
is equivalent to a statement that simply deals with the Dedekind-finiteness of finite powersets of
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Fig. 1. Implications between HT and other classical choice principles.

sets (see Proposition 2.2 below), suggesting that the algebraic and topological dynamics aspects of
Hindman’s Theorem are not particularly relevant from the point of view of choice principles.

In this paper, we locate the precise strength of HT among the most important classical choice
principles1. The choice principles considered are, in addition to the Axiom of Choice, the principle
of Countable Choice, the axiom of Dependent Choice, König’s Lemma, the principle that every
Dedekind-finite set is finite, the Boolean Prime Ideal theorem, the Kinna–Wagner selection principle,
the Ordering Principle, the Order Extension Principle, Ramsey’s Theorem, and Form 82 from [10]
(the latter is not as classical as the other ones, but we include it in our study due to its high
degree of similarity with a certain equivalence of HT). The results we obtain are summarized in
the diagram from Fig. 1, which contains all possible ZF-provable implications between HT and
the aforementioned choice principles, each of which is represented by the obvious abbreviation
in the diagram. Formal definitions of each of the choice principles considered are to be found in
Sec. 2.

The reader will note that the diagram from Fig. 1 contains very few implication arrows to and from
HT (the only ones are Fin = D-Fin ⇒ HT and HT ⇒ Form 82, both of which will be obvious, given
the equivalence of HT established in Proposition 2.2, once we state the meaning of the involved
choice principles). Therefore, we must emphasize that the main body of work presented in this
paper is not proofs of implications in ZF, but rather independence proofs, showing that there are no
further implications between HT and any other of the principles mentioned. In other words, the
most meaningful information that can be gathered from the diagram in Fig. 1 is not the arrows
shown, but rather the ones not shown, signalling that an independence proof (or an argument
stemming from a previous independence proof) has been established formally. As such, most of the
content of this paper deals either with symmetric models, or with Fraenkel–Mostowkski permutation
models (which yield symmetric models after applying well-known transfer theorems), thus obtaining
models of ZF witnessing the unprovability of the relevant statement. In Sec. 2 we relay a few basic

1Further work of E. Tachtsis [17] has established some equivalences between HT and other previously known weak
choice principles.
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ZF results; afterwards in Sec. 3 we discuss Fraenkel–Mostowski permutation models and the transfer
theorems that allow us to obtain ZF models from them, and proceed to determine whether HT
holds in various of these models. With this information in hand, we establish all the independence
results required to complete the diagram in Fig. 1, except for the reversibility of the implication
HT ⇒ Form 82; this is addressed in Sec. 4, which contains the proof that this implication is not
reversible (and the proof is involved enough that it warrants its own section). Finally, in Sec. 5, we
consider a weaker Boolean version of HT and also determine its place within the hierarchy of choice
principles (see the enhanced diagram from Fig. 2).

2. Some basic results

We begin by establishing that, in our definition of HT, we could have considered colourings on
any finite number of colours and still obtained an equivalent statement modulo ZF. Therefore,
we will temporarily use the symbol HT(k) (where k ∈ N \ {1}) to denote that, for every infinite
set X and every colouring c : [X]<ω −→ k, there exists an infinite, pairwise disjoint Y ⊆ [X]<ω

such that FU(Y ) is c-monochromatic. Hence, HT(2) is exactly what we called HT in Definition 1.1;
after the following proposition, we will be able to drop the parameter k and simply write HT in all
cases.

Proposition 2.1. All of the statements HT(k), as k ∈ N \ {1} varies, are equivalent under ZF.

Proof. Since k-colourings are always also k′-colourings whenever k ≤ k′, we have that HT(k′) ⇒
HT(k) under these circumstances. Now to finish the proof, we need only show that HT(k) ⇒ HT(k+1)
for k ≥ 2 (which yields an argument by induction). So suppose that k ≥ 2 and that HT(k) holds.
Let X be an infinite set and let c : [X]<ω −→ k + 1 be a colouring. Define another colouring
d : [X]<ω −→ k by letting d(x) = min{c(x), k − 1}. Using HT(k) we obtain an infinite pairwise
disjoint family Y ⊆ [X]<ω such that FU(Y ) is d-monochromatic, say on colour i < k. If i < k − 1
then FU(Y ) is c-monochromatic as well (on the same colour) and we are done; otherwise we
know that for every y ∈ FU(Y ), c(y) ∈ {k − 1, k}. Hence, we can define yet another colouring

e : [Y ]<ω −→ 2 given by e(F ) = k − c
(⋃

y∈F y
)
and use HT(2) to obtain an infinite, pairwise

disjoint family W ⊆ [Y ]<ω such that FU(W ) is e-monochromatic, say in colour j < 2. This means
that, for every F ∈ [W ]<ω,

j = e

( ⋃
F∈F

F

)
= k − c

 ⋃
y∈

⋃
F∈F F

y

 ,

so that, if we define

Z =

⋃
y∈F

y

∣∣∣∣F ∈W

 ,

then Z ⊆ FU(Y ) ⊆ [X]<ω is an infinite, pairwise disjoint family such that FU(Z) is monochromatic
for c (in colour k − j), and we are done. □

The “classical” choice principles considered in this paper, in addition to HT, are the following:

(1) The Axiom of Dependent Choice, abbreviated DC, is the statement that, for every set X
equipped with a relation R ⊆ X ×X such that (∀x ∈ X)(∃y ∈ X)(x R y), there exists a
countable sequence ⟨xn

∣∣n < ω⟩ such that (∀n < ω)(xn R xn+1) (this statement is labelled
Form 43 in [10]).
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(2) The Axiom of Countable Choice, which we will abbreviate CC, is the statement that every
countable family of nonempty sets admits a choice function (Form 8 from [10]).

(3) The statement “every infinite set is Dedekind-infinite” will be denoted by Fin = D-Fin (Form
9 in [10]).

(4) Ramsey’s theorem, denoted by RT, is the statement that for every infinite set X and for every
colouring c : [X]2 −→ 2, there exists an infinite Y ⊆ X such that [Y ]2 is c-monochromatic
(Form 17 from [10]).

(5) König’s lemma, which we will abbreviate KL, is the statement that every countable family
of nonempty finite sets admits a choice function (Form 10 in [10]).

(6) The Boolean Prime Ideal theorem, denoted by BPI, is the statement that every Boolean
algebra carries a prime ideal (Form 14 from [10]).

(7) The Kinna–Wagner selection principle, which will be abbreviated by KW, is the statement
that2 for every set X there exists an ordinal number α and an injective function f : X −→
℘(α) (Form 15 in [10]).

(8) The Ordering Principle, denoted by OP, is the statement that every set can be linearly
ordered (Form 30 from [10]).

(9) The Order Extension Principle, abbreviated OEP, is the statement that every partial order
can be extended to a linear order on the same set (Form 49 in [10]).

(10) Form 82 (according to the numbering in [10]) is the statement that for every infinite set X,
its powerset ℘(X) is Dedekind-infinite.

Recall that a set is said to be Dedekind-infinite if ω injects into it (equivalently, if there exists an
injective, but not surjective, function of the set into itself), and a set is Dedekind-finite if it is not
Dedekind-infinite. It is hard not to see that every Dedekind-infinite set must be infinite; however,
the converse to this statement is not provable in ZF, and is therefore considered a choice principle.
König’s Lemma owes its name to the fact that it is equivalent, over ZF, to the classical theorem about
finitely branching infinite trees due to König (that is, the statement that every finitely branching
infinite tree must have an infinite branch). Well-known classical results in choiceless set theory
establish that, over ZF, DC implies CC which in turn implies Fin = D-Fin; BPI implies OEP, and
either OEP or KW implies OP which in turn implies KL. Moreover, Fin = D-Fin implies both Form
82 and RT, and the latter in turn implies KL. Furthermore, none of the implications mentioned
in this paragraph is reversible, and there are no further implication relations between any of the
choice principles mentioned in this paragraph (see, e.g., [10] for a complete set of references on all
the facts just mentioned).

We now begin to analyse the strength of HT among all of these principles. Important information
can be gathered by “locally” studying those sets for which Hindman’s finite unions theorem holds
(as opposed to the “global” principle that every infinite set satisfies Hindman’s theorem). Such a
careful study was performed in [2], where the following definition is stated.

Definition 2.1 ([2], Definition 3.6 (3), cf. Definition 3.1). A set X will be called H-finite if there
exists a colouring c : [X]<ω −→ 2 such that for no infinite, pairwise disjoint Y ⊆ [X]<ω can the set
FU(Y ) be c-monochromatic. We will say that X is H-infinite if it is not H-finite (so X is H-infinite
if and only if Hindman’s finite unions theorem holds at X).

2Equivalently, for every family of sets F all of which have at least two elements, there is a function f with domain
F such that (∀S ∈ F )(∅ ̸= f(S) ⊊ S), see [11, Problem 4.12]. Sufficiently old papers refer to the Kinna–Wagner
selection principle simply as the selection principle.
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Thus, HT is simply the statement that every infinite set must be H-infinite. Hence, it follows
from, e.g., [2, Proposition 4.2] that HT is not provable in ZF alone. We can get much more precise
information after establishing the following equivalence of HT.

Proposition 2.2. In ZF, the statement HT is equivalent to the statement that for every infinite set
X, its finite powerset [X]<ω is Dedekind-infinite.

Proof. By [2, Theorem 3.2], a set X is H-finite if and only if [X]<ω is Dedekind-finite. Thus the
proposition follows immediately. □

Corollary 2.1. In ZF, Fin = D-Fin implies HT, which in turn implies Form 82.

Proof. Immediate from Proposition 2.2. □

In particular, by taking any model of ZF in which Fin = D-Fin holds but AC fails, we see that HT
is strictly weaker than the full Axiom of Choice. The fact that the implication Fin = D-Fin ⇒ HT
is not reversible is established in Sec. 3. That the implication HT ⇒ Form 82 is not reversible is the
content of Sec. 4.

In light of Proposition 2.2, we see that HT is precisely the piece that is missing from either KL or
RT to get Fin = D-Fin, as shown by the following proposition.

Proposition 2.3. In ZF, the following are equivalent:

(1) Fin = D-Fin,

(2) RT ∧ HT,

(3) KL ∧ HT.

Proof.

(1)⇒(2): This is immediate from Corollary 2.1 together with the well-known fact that
Fin = D-Fin ⇒ RT.

(2)⇒(3): Immediate from the fact that RT ⇒ KL.

(3)⇒(1): Assume that HT and KL both hold, and let X be an arbitrary infinite set. By
Proposition 2.2, HT implies that [X]<ω is Dedekind-infinite and so there is a countable
injective sequence ⟨Fn

∣∣n < ω⟩ of finite subsets of X. Recursively replacing, if necessary, each

Fn with Fm \
(⋃

k<m Fk
)
, where m ≥ n is the least index such that this set is nonempty, we

may assume that the Fn are pairwise disjoint and nonempty. The sequence of Fn forms a
countable family of nonempty finite sets, so by König’s lemma there is a choice function
f : ω −→

⋃
n<ω Fn ⊆ X. Since the Fn are pairwise disjoint and each f(n) ∈ Fn, we conclude

that the function f : ω −→ X is in fact injective, and so X is Dedekind-infinite.

□

We finish the section with a couple more ZF results that will be useful in the next section. To state
the first one, we recall a definition from [8].

Definition 2.2 ([8], Definition 8). A set X is said to be C-finite if there is no surjection f : X −→ ω,
and it is C-infinite if it is not C-finite.
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C-finite sets were called dually Dedekind-finite by Degen [4]. It follows from [7, Lemma 4.11] that
any set X is C-finite if and only if ℘(X) is Dedekind-finite. In particular, Form 82 can be thought
of as the statement that every infinite set is C-infinite.

Recall also that a set is amorphous if it is infinite and its only subsets are the finite ones and the
cofinite ones.

Proposition 2.4. In ZF, if X is amorphous and C-infinite, then X is H-infinite.

Proof. Since ℘(X) is Dedekind-infinite, there is an injective sequence ⟨An
∣∣n < ω⟩ of subsets of

X. Now, since X is amorphous, each An is either a finite, or a cofinite, subset of X; using the
pigeonhole principle, thin out the sequence by eliminating terms so that either all of the An are
finite, or all of the An are cofinite. In the first case, let Fn = An; in the second case let Fn = X \An,
for all n < ω. In either case, the sequence ⟨Fn

∣∣n < ω⟩ is an injective sequence of elements of [X]<ω,
and we are done. □

The next proposition, which is the last of the section, will be useful when determining whether HT
holds in Cohen’s model for the failure of the AC.

Proposition 2.5. In ZF, if X is a linearly orderable H-infinite set, then X is Dedekind-infinite

Proof. Let ≤ be a linear order on X and, since X is H-infinite, let ⟨Fn
∣∣n < ω⟩ be an injective

sequence of finite subsets of X. Using the same trick as in the proof of Theorem 2.3, we may assume
that the Fn are pairwise disjoint. Hence, if we define xn = min≤ Fn, the sequence ⟨xn

∣∣n < ω⟩ of
elements of X is injective. Therefore, X is Dedekind-infinite. □

3. Models of ZF and ZFA

There are two main techniques for independence proofs that we use throughout this paper. The
first one is by means of the forcing technique, passing to a special submodel of a forcing extension
to get a model of ZF; models obtained in this way are called symmetric models. The only model
arising from this technique that we will study in detail is Cohen’s basic model, as described in [11,
Sec. 5.3]; this model is denoted M1 in [10]. The other technique that will be used is that of the
Fraenkel–Mostowski permutation models of ZFA, as described in [11, Secs. 4.1 and 4.2]. The three
“classical” Fraenkel–Mostowski models that we will study in this section are the First and Second
Fraenkel Model (denoted by N1 and N2, respectively, in [10]), and Mostowski’s Linearly Ordered
Model (N3 in [10]). These models are described (each on a different section) in [11, Secs. 4.3–4.5],
and any unexplained notation is used as in that source. In Sec. 4, we will build a new permutation
model in order to show that Form 82 does not imply HT.

3.1. Transferable statements and finiteness classes. Since we are ultimately interested in
proofs of independence from ZF, rather than from ZFA, it is necessary to justify that independence
proofs from the latter can be transferred to independence proofs from the former, for statements
like the ones we will consider in this paper.

Definition 3.1. Let φ be a formula in the language of set theory.

(1) If φ is a statement, we say that φ is transferable if there is a metatheorem stating that, if
there exists a Fraenkel–Mostowski model N of ZFA satisfying φ, then there exists a model
M of ZF that also satisfies φ.
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(2) We say that φ is a boundable formula if there is an absolutely definable ordinal α such that,

for every x, we have that φ(x) is equivalent to its relativization φ℘
α(x)(x) (here ℘α denotes

the usual iterated powerset operation, defined recursively by ℘0(x) = x, ℘ξ+1(x) = ℘(℘ξ(x)),
and ℘ξ(x) =

⋃
β<ξ ℘

β(x) for limit ξ).

(3) A boundable statement is the existential closure of a boundable formula.

(4) We say that φ is injectively boundable if it is a (finite) conjunction of formulas of the form

(∀y)(ℵ(y) ≤ σ(x) ⇒ ψ(y, x))

where ψ(y, x) is a boundable formula and σ(y) is a term3 defined by a boundable formula
that depends on y (here ℵ(y) is the Hartogs number of y, the least ordinal number that does
not inject in y).

(5) An injectively boundable statement is the existential closure of an injectively boundable
formula.

The definitions of a boundable formula and statement are from [12], and all of the other definitions
can be found in [13]. The classical Jech–Sochor theorem [12] (see also [11, Theorem 6.1]) states
that all boundable statements are transferable. A generalization of this result was established by
Pincus [13, Metatheorem 2A6], who proved that all injectively boundable statements are transferable
(note that the class of injectively boundable statements contains all boundable statements and is
closed under conjunction, so Pincus’s result is stronger that Jech–Sochor’s). An even stronger result
that will be enough for our purposes is the following.

Theorem 3.1. Any conjunction of a finite number of injectively boundable statements together with
any statements among OP, BPI, DC, CC, is transferable.

Proof. This is a consequence of [14, Theorem 4 and note in p. 145] (see also [15, p. 547]). □

Pincus’s results are even more general (a much more general transfer theorem is stated in [10, p.
286]); here we have stated only what can be expressed in terms of the definitions given so far, which
will be enough for our purposes.

Recall that a finiteness class is a class of sets F containing all finite sets, not containing ω, and
closed under subsets and bijective images. It is worth noting that all the variations of “finite”
that we have mentioned here (namely H-finite, Dedekind-finite and C-finite) constitute finiteness
classes.

Definition 3.2. We will say that a finiteness class F is tame if there is a boundable formula φ(x)
such that F = {x | φ(x)}.

A glance at the definitions will convince the reader that the classes of H-finite, Dedekind-finite
and C-finite sets are all tame (this is also explained, with some more detail, in [2, p. 15, third
paragraph]).

Theorem 3.2. Let F ,G be tame finiteness classes. Then, both the statement that F = G and the
statement that F ̸= G are injectively boundable (and hence transferable).

3For the purposes of this paper, it is always sufficient to take σ(y) = ℵ0.
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Proof. Let φ(x), ψ(x) be boundable formulas such that F = {x
∣∣φ(x)} and G = {x

∣∣ψ(x)}. Note that
the class of boundable formulas is closed under Boolean combinations (conjunctions, disjunctions and
negations), and that every boundable formula (respectively, statement) is also injectively boundable
(respectively, statement). Hence, the statement F ̸= G , which is equivalent to (∃x)((φ(x)∧¬ψ(x))∨
(¬φ(x) ∧ ψ(x))), is boundable, hence injectively boundable.

For the remaining statement, recall that the class of Dedekind-finite sets (denoted D-Fin) is the
largest finiteness class (this is a consequence of the fact that finiteness classes do not contain ω and
are closed under subsets), and so F ,G ⊆ D-Fin. Hence, the statement that F = G is equivalent to
the statement that for every Dedekind-finite set x, x ∈ F ⇐⇒ x ∈ G . It follows immediately from
the definition that a set x is Dedekind-finite if and only if ℵ(x) ≤ ω. Hence, the statement that
F = G is equivalent to the statement

(∀x)(ℵ(x) ≤ ω ⇒ (φ(x) ⇐⇒ ψ(x))),

which is an injectively boundable statement. □

3.2. The truth-value of HT in the models. We now proceed to determine whether HT holds in
each of the four models mentioned at the beginning of the section.

Theorem 3.3. HT does not hold in the First Fraenkel Model N1.

Proof. In N1 there is an infinite, H-finite set. In fact, the set A of atoms is such a set by [2,
Proposition 4.2]. □

Theorem 3.4. In the Second Fraenkel Model N2, HT holds.

Proof. Take an arbitrary infinite set X ∈ N2 and let us argue that its finite powerset [X]<ω is
Dedekind infinite. If X is well-orderable we are done, so assume that it is not. Take a finite support
F0 :=

⋃n0
i=0 Pi for X. Now, working in the real world (rather than in N2), recursively choose xk ∈ X

and nk ∈ N such that nk < nk+1 and xk is not supported by Fk =
⋃nk
i=0 Pi but it is supported by

Fk+1 =
⋃nk+1

i=0 Pi (we can always choose such an xk because X fails to be well-orderable in N2 and
so no single finite subset of A can simultaneously support every element of X). For each k < ω, the
set Yk = {π(xk)

∣∣π pointwise fixes F0} is symmetric (supported by F0) and hence it belongs to N2;
as X is supported by F0, we have Yk ⊆ X. Furthermore, note that, since xk is supported by Fk+1,
the value of π(xk) is completely determined by π ↾ Fk+1, whenever π ∈ G. There are only finitely
many possible values for π ↾ Fk+1 —in fact, with the requirement that π pointwise fixes F0, and
given that Fk+1 \ F0 =

⋃nk+1

i=n0+1 Pi, there are at most 2nk+1−n0 possible values for π ↾ Fk+1. This

means that |Yk| ≤ 2nk+1−n0 , so Yk is finite. As each Yk is supported by F0, we may conclude that
the set

f =
{
⟨k, Yk⟩

∣∣k < ω
}

is also supported by F0, and hence f ∈ N2. While f need not be injective, notice that (since the
xk are pairwise distinct and each Yk is finite) its range must be infinite, hence it is possible to
modify f and obtain an injective function : ω −→ [X]<ω. Thus, we may conclude that [X]<ω is a
Dedekind-infinite set in N2. Therefore N2 ⊨ HT. □

Theorem 3.5. In Mostowski’s Linearly Ordered Model N3, HT fails.

Proof. It is known [11, Section 4.5] that N3 ⊨ OP, and this implies that N3 ⊨ KL; however,
N3 ̸⊨ Fin = D-Fin. Hence, by Proposition 2.3, it must be the case that N3 ̸⊨ HT. □

Theorem 3.6. HT fails in the Basic Cohen Model M1.
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Proof. Let X be the set of countably many generic Cohen reals used to construct M1. X is
Dedekind-finite in M1 [3, Chap. IV, Sec. 9, Theorem 1, p. 138] (using modern notation, the
argument in [11, Lemma 5.15] indeed shows this); it is also linearly orderable since X ⊆ R. Hence,
by Proposition 2.5, X is also H-finite and so M1 ⊨ ¬HT. □

3.3. HT and BPI, OEP, KW, OP, KL, DC, CC, Fin = D-Fin. With the information from the
previous section under our belt, we are now able to establish which implications between HT and
other choice principles can be proved under ZF. Recall that HT is simply the statement that the
class of finite sets coincides with the class of H-finite sets; since both of these are tame finiteness
classes, both HT and ¬HT are injectively boundable statements by Theorem 3.2. This fact will be
used extensively in what follows.

Theorem 3.7. Under ZF, the principles DC, CC and Fin = D-Fin imply HT, and none of these
implications is reversible.

Proof. Since DC ⇒ CC ⇒ Fin = D-Fin ⇒ HT (the latter implication due to Corollary 2.1), and both
HT and ¬(Fin = D-Fin) are injectively boundable statements by Theorem 3.2, Theorem 3.1 implies
that it suffices to exhibit a model of ZFA where HT holds but Fin = D-Fin fails. By Theorem 3.4,
the Second Fraenkel Model N2 satisfies this (it is straightforward that the set of atoms A in N2 is
Dedekind-finite). □

Theorem 3.8. In ZF, there are no provable implications between HT and any of BPI, OEP, KW,
OP, KL (thus HT is independent of each of these choice principles).

Proof. Cohen’s Basic Model M1 satisfies BPI and KW (this follows from [6], see also [10, p. 146]).
Since BPI ⇒ OEP ⇒ OP ⇒ KL, and since HT fails in M1 (by Theorem 3.6), it follows that neither
of KW, BPI, OEP, OP, or KL, imply HT in ZF.

(For all the choice principles mentioned in the statement of the theorem, except KW, one can obtain
an alternative argument by considering Mostowski’s Linearly Ordered Model N3, where HT fails
(Theorem 3.5). This model satisfies BPI, as proved in [11, Section 7.1], so it suffices to invoke
Theorems 3.5 and 3.1 to see that BPI does not imply HT over ZF (and hence, neither of OEP, OP,
KL imply HT either). This argument, however, does not work for KW since the latter fails in N3,
see [10, pp. 182–183].)

Conversely, consider the Second Fraenkel Model N2. By Theorem 3.4, N2 ⊨ HT. Since the set of
atoms A in N2 is Dedekind-finite, it follows from Proposition 2.3 that N2 ⊨ ¬KL (alternatively,
one can directly see that the countable sequence of pairs that gives rise to the model, ⟨Pn

∣∣n < ω⟩,
constitutes a countable family of nonempty finite sets without a choice function). Note that the
formula φ(x) stating “x = (T,≤) is an infinite, finitely branching tree without infinite branches” is
boundable (equivalent to its relativization to ℘ω+1(x)) and thus ¬KL ≡ (∃x)(φ(x)) is a boundable
statement. Hence, by Theorem 3.1, HT does not imply KL in ZF. It follows immediately that HT
does not imply neither of OP, OEP, BPI, or KW either. □

3.4. HT and various flavours of RT. So far in this paper, we have only considered the version of
Ramsey’s theorem dealing with partitions of pairs. Variants of this result in other dimensions have,
however, also been considered.

Definition 3.3. Given an n ∈ N \ {1}, the symbol RTn will denote the statement that, for every
infinite set X and every colouring c : [X]n −→ 2, there exists an infinite Y ⊆ X such that [Y ]n is
c-monochromatic.
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It is possible to change the above definition to deal with any finite number of colours, but in any
case we wind up with an equivalent statement. More precisely, if we let RTn(k) (with n, k ∈ N \ {1})
be the statement that for every infinite set X and every colouring c : [X]n −→ k, there exists an
infinite Y ⊆ X such that [Y ]n is c-monochromatic, then it is a theorem of Forster and Truss [5,
Lemma 2.2] that, for each given n, all of the statements RTn(k) as k varies are equivalent under ZF.
The same two authors also establish [5, Theorem 2.3] that, if n ≤ m, then RTm ⇒ RTn in ZF. We
still write RT without exponent to refer to RT2, and remind the reader that this statement is Form
17 in [10]. The statement (∀n)(RTn), on the other hand, is referred to as Form 325 in [10].

In [2, Definition 2.1], a set X is defined to be Rn-infinite if for every c : [X]n −→ 2 there exists an
infinite Y ⊆ X such that [Y ]n is c-monochromatic (that is, if the n-dimensional Ramsey’s theorem
holds at X); and of course X is Rn-finite if it is not Rn-infinite. Hence, RTn is simply the statement
that every infinite set is Rn-infinite, and statements about the veracity or failure of the principles
RTn can be thought of as statements about certain finiteness classes being equal. Furthermore,
the class of Rn-finite sets is tame for every n ∈ N \ {1}, and therefore any of the statements RTn,
¬RTn, and their combinations (in conjunction) with HT and ¬HT are injectively boundable by
Theorem 3.2.

Theorem 3.9. In ZF, there is no provable implication relation between HT and any of the RTn

(n ∈ N \ {1}), nor between HT and Form 325.

Proof. Consider the Second Fraenkel Model N2. Theorem 3.4 establishes that N2 ⊨ HT; on the
other hand, it is shown in [2, Proposition 4.7] that the set of atoms in N2 is R2-finite. In particular,
RT fails and a fortiori, so do each of the RTn (n ≥ 3) as well as Form 325. Since HT and all of the
¬RTn are injectively boundable, it follows from Theorem 3.1 that HT does not imply any of the
Ramsey-theorem-related choice principles in ZF.

Conversely, consider the First Fraenkel Model N1. We know by Theorem 3.3 that HT fails in N1.
On the other hand, it is established in [2, Proposition 4.1] that the set A of atoms is Rn-infinite
for all n ≥ 2; furthermore, by [1, Lemma, p. 389], every non-well-orderable set from N1 contains
an infinite subset which is in bijection to a cofinite subset of A. Hence, every infinite set in N1

contains an infinite subset which is either in bijection with ω, or with a cofinite subset of A;
since both ω and A are Rn-infinite, it follows that every infinite set is Rn-infinite in N1. Hence,
N1 ⊨ (∀n ∈ N \ {1})(RTn); since ¬HT and all of the RTn are injectively boundable, it follows that
neither of the RTn imply, not even jointly (i.e. as Form 325), the principle HT in ZF4. □

3.5. HT and other choice principles. We finish the chapter by briefly mentioning how one
can obtain further information, regarding the implication relations (or lack thereof) between HT
and a few other known choice principles. One can obtain plenty of information simply based on
Theorems 3.4 and 3.6, which state that HT holds in the Second Fraenkel Model N2 and fails in
Cohen’s basic model M1. For example, there is no implication between HT and any of Choice
from Well-Orderable sets AC(∞,WO), Choice from finite sets AC(∞, < ℵ0), and Choice from pairs
AC(∞,≤ 2), since each of these principles holds in M1 (for the first one, see [11, Exercise 5.22]; the
remaining two are easily consequences of OP) and fails in N2 (as witnessed by the partition of the
set of atoms in pairs giving rise to the model); of course it is also important to notice that the failure
of each of these principles is a boundable statement so we are able to use transfer theorems. It is

4It is clear that, for each individual n, the statement RTn ∧ ¬HT is injectively boundable. The statement of Form
325, however, is at first sight a conjunction of all of the RTn simultaneously. In this case, one needs to verify by hand
that the formula φ(x) stating that “for every n < ω and every c : [x]n −→ 2, there is an infinite y ⊆ x such that c is
constant in [y]n” is boundable (equivalent to its relativization to ℘ω+1(x)) and hence Form 325, which is equivalent to
(∀x)(ℵ(x) ≤ ω ⇒ φ(x)), is an injectively boundable statement.
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also worth noting that neither the Hahn–Banach theorem nor the Ultrafilter theorem imply HT, not
even jointly, since both of these principles follow from BPI; and HT does not imply either of these
principles either, as witnessed by Solovay’s model (which satisfies DC, and therefore also HT).

4. HT vs. Form 82

Recall that we established in Corollary 2.1 that HT implies Form 82 under ZF. The purpose of
this section is to prove that this implication is not reversible. Since Form 82 is equivalent to the
statement that every C-finite set is finite, and the class of C-finite sets is tame, it follows from
Theorems 3.2 and 3.1 that it suffices to build a Fraenkel–Mostowski permutation model of ZFA
satisfying Form 82, but not satisfying HT.

For the construction, we begin with a model of ZF with |A| = c, and take a bijection : ωω −→ A,
which we denote by f 7−→ af . Recall that ω

ω is naturally endowed with a metric space structure,

given by declaring d(f, g) to be 0 if f = g and
1

1 + ∆(f, g)
otherwise, where ∆(f, g) = min{k <

ω
∣∣f(k) ̸= g(k)}. For each s ∈ ω<ω we let Us = {f ∈ ωω

∣∣f ↾ |s| = s}; this is an open ball in ωω with

radius 1
|s| , and the collection {Us

∣∣s ∈ ω<ω} of all such balls forms a basis for the topology in ωω

induced by the aforementioned metric.

We consider the group G consisting of all permutations of A that are induced by isometries of ωω;
that is, π ∈ G if and only if there exists an isometry φ : ωω −→ ωω such that π(af ) = aφ(f), in
which case we will denote π = πφ. Note that every isometry must map each of the basic open sets Us
to some Ut satisfying |s| = |t|. Hence, any such isometry gives rise to, and is entirely determined by,
an “assembly” of permutations ⟨φs : ω −→ ω

∣∣s ∈ ω<ω⟩ such that, for each s ∈ ω<ω, if φ[Us] = Ut
then φ[Us⌢n] = Ut⌢φs(n) for all n < ω.

We now proceed to define a filter on G . For each n < ω and finite F ⊆ ωω, we define

Gn,F = {πφ
∣∣(∀f ∈ F )(φ(f) = f) and (∀s ∈ ωn)(φ[Us] = Us)}

In other words, Gn,F consists of all πφ where, if φ is determined by the assembly of permutations

⟨φs
∣∣s ∈ ω<ω⟩, then we have for all k ≤ n and for all s ∈ ωk that φs is the identity permutation, and

furthermore, for all k < ω and all f ∈ F it is the case that φf↾k(f(k)) = f(k). (Note that G0,∅ = G .)
It is easily verified that, for n,m < ω and finite E,F ⊆ ωω, we have Gn,F ∩Gm,E = Gmax{n,m},E∪F ,

and so the family {Gn,F
∣∣n < ω and F ⊆ ωω is finite} generates a filter of subgroups of G , which

we will denote with F . Furthermore, F contains the stabilizer of each atom (the stabilizer
of af is the subgroup G0,{f}), and is closed under conjugates (since given πφ ∈ G , we have

π−1
φ Gn,Fπφ = Gn,φ−1[F ]). The filter F is therefore a normal filter of subgroups of G , as defined

in [11, Chap. 4], and so the class M(A,F ,G ) of hereditarily symmetric (with respect to this filter
and group) sets satisfies ZFA.

Lemma 4.1. In M(A,F ,G ), the set A is not H-infinite.

Proof. Suppose, on the contrary, that there exists within M(A,F ,G ) a countable injective sequence
⟨Am

∣∣n < ω⟩ with each Am a finite subset of A. Let n < ω and F ∈ [A]<ω be such that the
enumeration of this sequence is fixed by the elements of Gn,F . Since the Am are mutually distinct,
there is a k < ω such that Ak ̸⊆ F , so we may pick an f ∈ ωω such that af ∈ Ak \ F , pick
K > max{n}∪{∆(f, g)

∣∣g ∈ F}, and let f ′ ∈ Uf↾K \{g ∈ ωω
∣∣ag ∈ Ak} (this can be done because Ak

is finite). Then one can find an isometry φ : ωω −→ ωω fixing all Us for s ∈ ωn, fixing each element
of F , and mapping f to f ′. Thus, the permutation πφ ∈ Gn,F maps af to af ′ and consequently

does not fix Ak, contradicting the fact that it fixes the sequence ⟨Am
∣∣m < ω⟩. □
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In particular, we have that M(A,F ,G ) ⊨ ¬HT. The remainder of the section is devoted to proving
that every infinite set in M(A,F ,G ) is C-infinite, and hence this model satisfies Form 82. We begin
by considering subsets of A.

Lemma 4.2. Working in M(A,F ,G ), let X ⊆ A be infinite. Then X is C-infinite.

Proof. Begin by noticing that, for each s ∈ ω<ω, the set As = {af
∣∣f ∈ Us} belongs to M(A,F ,G ),

since this set is fixed by all elements of G|s|,∅. Furthermore, each permutation in G|s|+1,∅ fixes

each of the sets As⌢n = {af
∣∣f ∈ Us⌢n}; this implies that the (injective) sequence ⟨As⌢n

∣∣n < ω⟩,
consisting of subsets of As, also belongs to M(A,F ,G ). This shows that, in M(A,F ,G ), each of
the sets As is C-infinite (in particular, for s = ∅ we see that A = A∅ is C-infinite). Thus, to prove
the lemma it suffices to show that, if X ⊆ A is infinite and belongs to M(A,F ,G ), then As ⊆ X
for some s ∈ ω<ω.

To show this, suppose X ⊆ A is infinite and belongs to M(A,F ,G ). Let n < ω and F ∈ [A]<ω be
such that each element of Gn,F fixes X. Since X is infinite, we may find an f /∈ F such that af ∈ X.
Pick an m > max{∆(f, g)

∣∣g ∈ F} ∪ {n}. Notice, then, that for each f ′ ∈ Uf↾m it is possible to find
an isometry φ : ωω −→ ωω such that φ[Us] = Us for s ∈ ωm, φ(g) = g for g ∈ F , and φ(f) = f ′.
Since each such isometry φ satisfies πφ ∈ Gn,F , we conclude that af ′ = aφ(f) = πφ(af ) ∈ X.
Therefore Af↾m ⊆ X. □

We are now in conditions to finish our proof.

Theorem 4.1. The model M(A,F ,G ) satisfies Form 82.

Proof. Working in M(A,F ,G ), let X be an arbitrary infinite set. If X is well-orderable, then it is
C-infinite, so we may assume without loss of generality that X is not well-orderable. This means
that for no n < ω and for no F ∈ [A]<ω can the permutations of Gn,F simultaneously fix all elements
of X. Let n < ω and F ∈ [A]<ω be such that Gn,F fixes X. We divide the proof in two cases:

Case 1: Suppose there is an x ∈ X such that for no m ≥ n is it the case that Gm,F fixes x.
In this case, pick an F ′ ∈ [A]<ω \ {F}, with F ⊆ F ′, of least possible cardinality such that
Gm,F ′ fixes x for some m < ω. Fix such m, assuming without loss of generality that m ≥ n.

Choose f ∈ F ′ \ F , and choose k > max
(
{m} ∪ {∆(f, g)

∣∣g ∈ F ′}
)
. Consider the set

h = {(π(af ), π(x))
∣∣π ∈ Gk,F ′\{f}}.

This set is clearly fixed by all permutations in Gk,F ′\{f} and therefore belongs toM(A,F ,G ).
Furthermore, we claim that h is a function. To see this, suppose that we have two ele-
ments πφ, πψ ∈ Gk,F ′\{f} such that πφ(af ) = πψ(af ). This means φ(f) = ψ(f), and thus

φ−1ψ(f) = f . Hence, φ−1ψ ∈ Gk,F ′ ⊆ Gm,F ′ and so π−1
φ (πψ(x)) = πφ−1ψ(x) = x, and

therefore πφ(x) = πψ(x). Note also that, since Gk,F ′\{f} ⊆ Gn,F , the range of h is a subset
of X.

Now, for each j ≥ k, notice that the set Aj = {ag ∈ A
∣∣∆(f, g) = j} belongs to M(A,F ,G )

(as it is fixed by all elements in G0,{f}), and let us consider the restricted function h ↾ Aj .
The argument breaks into two subcases:

Subcase 1.A: There exists a j ≥ k such that h ↾ Aj is injective. Then the set h[Aj ] is in
bijection with Aj ; since the latter is C-infinite by Lemma 4.2, we conclude that so is
h[Aj ]. Since h[Am] ⊆ X, it follows that X is C-infinite.
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Subcase 1.B: For every j ≥ k, the function h ↾ Aj fails to be injective. We claim that,
in this case, each of the functions h ↾ Aj is in fact a constant function, with constant
value x. To see this fix any j ≥ k, and pick two permutations π, ρ ∈ Gk,F ′\{f} such that

π(af ), ρ(af ) ∈ Aj , π(af ) ̸= ρ(af ), and π(x) = ρ(x). Then ρ−1π(af ) ∈ Aj \ {af} and
ρ−1π(x) = x. We conclude that there is a σ ∈ Gk,F ′\{f} such that σ(af ) ∈ Aj \ {af}
and σ(x) = x.

Now take an arbitrary g ∈ ωω such that ∆(g, f) = j (that is to say, take an arbitrary
ag ∈ Aj). Then one can find a τ ∈ Gk,F ′ such that τ(σ(af )) = ag; thus we have τ(x) = x.
Notice, then, that τσ ∈ Gk,F ′\{f}, and so h(τσ(af )) = τσ(x). But τ(σ(af )) = ag and
τ(σ(x)) = τ(x) = x, thus h(ag) = x and, ag being arbitrary in Aj , we conclude that
h ↾ Aj is a constant function with constant value x.

Note that, given any π ∈ Gk,F ′\{f}, we must have, if π(af ) = ag, that ∆(f, g) ≥ k. In
other words, π(af ) ∈ Aj for some j ≥ k. Then, x = h(π(af )) = π(x). The conclusion
is that Gk,F ′\{f} fixes x, contrary to the assumption about F ′ being of least possible
cardinality.

Case 2: Suppose the assumption from Case 1 does not hold. Then, for every x ∈ X, there is
an m ≥ n such that Gm,F fixes x. Since Gn,F fixes X setwise, we have an action of Gn,F
on the set X, and therefore X can be written as the disjoint union of orbits. Each of these
orbits is of the form O(x) = {π(x)

∣∣π ∈ Gn,F }, and is fixed by Gn,F —hence it belongs to
M(A,F ,G ). We begin by showing that every orbit is, in fact, well-orderable in M(A,F ,G ).
To see this, take an arbitrary x ∈ X, and let m ≥ n be such that Gm,F fixes x. Then we
claim that Gm,F fixes every element of O(x): for if π(x) ∈ O(x), for some π ∈ Gn,F , and
ρ ∈ Gm,F is arbitrary, then a routine calculation shows that π−1ρπ ∈ Gm,F , and therefore
π−1ρπ(x) = x, thus ρ(π(x)) = π(x). Since a single element of the filter F fixes all elements
of O(x), a routine argument shows that any well-ordering of O(x) “from the real world”
must also belong to M(A,F ,G ) —fixed by Gm,F .

In particular, this implies that X cannot be covered with finitely many orbits, since the
disjoint union of finitely many well-orderable sets is well-orderable in ZF, contrary to our
assumption about X. Now, the set O = {O(x)

∣∣x ∈ X} ⊆ ℘(X) belongs to, and is well-
orderable in, M(A,F ,G ) —it and each of its elements being fixed by Gn,F . In particular,
it is Dedekind-infinite, and hence so is ℘(X), which means that X is C-infinite, and we are
done.

This finishes the proof. □

Corollary 4.1. In ZF, Form 82 does not imply HT.

Proof. By Lemma 4.1, the modelM(A,F ,G ) fails to satisfy HT; this, coupled with Theorems 4.1, 3.2,
and 3.1, finishes the proof. □

5. A weaker Boolean form of HT

In [2], certain variations of H-finite sets are considered. Recall that, given a set X, one can equip the
set [X]<ω with the symmetric difference as a binary operation, in order to obtain an Abelian group (in
which each element has order 2, hence this is usually called a Boolean group). In this group, given a
family Y ⊆ X one can consider its set of finite sums, FS(Y ) = {y1+. . .+ym

∣∣m ∈ N∧y1, . . . , ym ∈ Y },
where + denotes the Abelian group operation —the symmetric difference. Note that, for a pairwise
disjoint family Y ⊆ [X]<ω, FU(Y ) = FS(Y ) and so one could consider Hindman’s finite unions
theorem HT as a special case of an analogous statement on which one obtains a monochromatic
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FS(Y ) without requiring that Y is a pairwise disjoint family. It turns out that this analogous
statement is equivalent to the original one; however, one obtains strictly weaker statements if one
starts restricting the number of summands allowed in our finite sums.

Definition 5.1. Given a set X, a family Y ⊆ [X]<ω, and an n ∈ N, we let FS≤n(Y ) = {F1 △ · · · △
Ft
∣∣t ≤ n and F1, . . . , Ft ∈ Y }. For n, k ∈ N, we let HTn(k) denote the statement that for every

infinite set X and every colouring c : [X]<ω −→ k, there exists an infinite Y ⊆ [X]<ω such that
FS≤n(Y ) is c-monochromatic.

Hence, HTn(k) denotes Hindman’s theorem for k colours and finite sums of at most n summands.
For a fixed k, it follows5 from [2, Theorem 3.2] that HT is equivalent to HTn(k) whenever n ≥ 4
and k is arbitrary, and HT ⇒ HT3(k) ⇒ HT2(k).

Looking at [2, Corollary 4.16] and the subsequent discussion, as well as [2, Question 5.1 (1)], it
becomes apparent that HT3(k) seems to be very close to HT, and for all we know these two principles
could very well turn out to be equivalent over ZF.

Question 5.1. Given a fixed k ≥ 2, is the principle HT3(k) equivalent to HT over ZF?

In this section, we study the strength of the principle HT2(k), where k is fixed but arbitrary.
Although we do not know whether the HT2(k) are equivalent for distinct k (of course, it is clear
that HT2(k + 1) ⇒ HT2(k) for each k ≥ 2), for the considerations in this paper it does not make
a difference which specific k we have fixed, and so we will uniformly study all of the HT2(k).
Following [2, Definition 3.1, Corollary 3.5, Definition 3.6], we will say that X is H2(k)-infinite if for
every c : [X]<ω −→ k there exists an infinite Y ⊆ [X]<ω such that FS≤2(Y ) is c-monochromatic,
and X is H2(k)-finite if it is not H2(k)-infinite. So HT2(k) is simply the statement that every infinite
set is H2(k)-infinite, and hence both HT2(k) and its negation are injectively boundable statements
(since the class of H2(k)-finite sets is a tame finiteness class).

Since every R2-infinite set is H2-infinite by [2, Theorem 3.8], we have RT ⇒ HT2(k), for any k ≥ 2.
Hence, either of HT and RT (and a fortiori also any RTn, n > 2, as well as Form 325) both imply
HT2(k) for every k ≥ 2. We now proceed to precisely locate HT2(k) among the various choice
principles considered in this paper. The information obtained can be seen in the enhanced diagram
from Fig. 2 (with the main information being the arrows not shown in the diagram, cf. the discussion
in the Introduction).

Theorem 5.1. The models N1, N2 and N3 all satisfy HT2(k) for all k ≥ 2.

Proof. Since (HT ∨ RT) ⇒ HT2(k), the statement is immediate from the fact that N1 ⊨ RT (by [1,
Theorem 2]), N2 ⊨ HT (Theorem 3.4), and N3 ⊨ RT (this is a theorem of Tachtsis [16, Theorem
2.4]). □

Corollary 5.1. In ZF, HT2(k) does not imply HT or any of the RTn (and a fortiori, it does not
imply Form 325 either), for any k ≥ 2.

Proof. Either of the models N1 and N3 satisfy HT2(k) by Theorem 5.1, while neither of them
satisfies HT, by Theorems 3.3 and 3.5. Thus HT2(k) does not imply HT (in ZFA, but also in ZF
since HT2(k) ∧ ¬HT is an injectively boundable statement), for any k ≥ 2.

5In the two references that follow, what was really proved is the case k = 2, but it is clear from a cursory reading
of the proof that this can be adapted to any k.
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Fig. 2. Enhanced diagram of implication relations, now including HT2(k) among
the other classical choice principles.

On the other hand, the model N2 satisfies HT2(k) but it does not satisfy any of the RTn (as argued
in the proof of Theorem 3.9), and so HT2(k) does not imply any of the RTn (again, originally in ZFA
but it follows that this works also in ZF since HT2(k) ∧ ¬RT is an injectively boundable statement),
for any k ≥ 2. □

The choice principle HT2(k) is thus strictly weaker than both HT, and all of the RTn, for any
k ≥ 2. It follows immediately that HT2(k) is also strictly weaker than (meaning that it is implied
by, with the implication not reversible) all of DC, CC, and Fin = D-Fin. The following theorem will
allow us to establish the lack of implication relations between HT2(k) and a host of other choice
principles.

Theorem 5.2. In the basic Cohen model M1, HT2(2) fails (and hence so does HT(k), for any
k ≥ 2).

Proof. Let us fix some notation: let P be the forcing notion where conditions are finite functions
p : F × n −→ 2 for some finite F ⊆ ω, n < ω. Given a permutation π ∈ Sym(ω), we also use
the letter π to denote the automorphism π : P −→ P induced by permuting the columns of ω × ω
according to π. Let X = {xn

∣∣n < ω} be the set of Cohen reals (thought of as elements of 2ω)
added by P (xn represents the n-th column of the generic function : ω × ω −→ 2). (Of course, the
enumeration ⟨xn

∣∣n < ω⟩ does not belong to M1 even though the set {xn
∣∣n < ω} does.)

Define the colouring c : [X]<ω −→ 2 given by c(F ) = 1 if and only if there are distinct xn, xm ∈ F
such that min(xn △ xm) is even. We claim that c witnesses that HT2(2) fails. To see this, suppose,
aiming for a contradiction, that Y ⊆ [X]<ω is an infinite set such that FS≤2(Y ) is c-monochromatic.

Let E ⊆ ω be a finite “support” for the set Y ; in other words, let Y̊ be a P-name for Y such
that every permutation π fixing each element of E, satisfies that π(Y̊ ) = Y̊ . Since Y is infinite,
there is an F ∈ Y such that F ̸⊆ {xk

∣∣k ∈ E}. Let n < ω, n /∈ E, and p ∈ P be such that
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p ⊩ “x̊n ∈ F̊ ∈ Y̊ ”. Take an m < ω such that m /∈ dom(dom(p))∪E, and let π be the transposition

of n and m. Then π(p) ⊩ “x̊m ∈ π(F̊ ) ∈ Y̊ ”; furthermore, p and π(p) are compatible conditions.

Thus p ∪ π(p) ⊩ “{x̊n, x̊m} = F̊ △ π(F̊ ) ∈ FS≤2(Y̊ )”, and p ∪ π(p) also forces that xn agrees with
xm up to ran(dom(p)). Let q be an extension of p ∪ π(p) deciding that min(x̊n △ x̊m) is even; this
shows that the colour of FS≤2(Y ) is 1. However, one can run the exact same argument up to the
moment where one chooses q, at which time let us pick q forcing that min(x̊n △ x̊m) is odd. This
implies that the colour of FS≤2(Y ) is also 0, a contradiction. □

Corollary 5.2. Given a fixed k ≥ 2, there is no ZF-provable implication relation between HT2(k)
and neither of BPI, OEP, KW, OP, or KL.

Proof. HT2(k) cannot imply neither of the choice principles mentioned in the statement of the
theorem, since HT does not imply them either. On the other hand, all of these choice principles
hold in M1 (as mentioned in the proof of Theorem 3.8), while HT2(k) fails in this model because of
Theorem 5.2. Hence, neither of the principles mentioned in the statement of the theorem implies
HT2(k). □

It remains to establish whether there are any implication relations between HT2(k) and Form 82.
In order to do this, the following theorem will be instrumental.

Theorem 5.3. In the model M(A,F ,G ) from Sec. 4, HT2(2) fails (and hence so does each of the
HT2(k) for k > 2).

Proof. Notice that the metric on A induced by the bijection f −→ af from ωω to A belongs to
M(A,F ,G ), since it is supported by the empty set; use the letter d to denote that metric. Then,
for any two atoms af , ag, the number d(af , ag) is the reciprocal of an integer. We can therefore
define, within M(A,F ,G ), the colouring c : [A]<ω −→ 2 given by c(F ) = 1 if and only if there are
two distinct af , ag ∈ F such that 1/d(af , ag) is even. We claim that the colouring c witnesses the
failure of HT2(2) in M(A,F ,G ).

To see this, suppose that Y ⊆ [X]<ω is an infinite, pairwise disjoint family such that FS≤2(Y )
is monochromatic, and let E ⊆ ωω be a finite set, and n < ω, such that every π ∈ Gn,E fixes
Y . Since Y is infinite, we can find an F ∈ Y such that there is af ∈ F \ {ah

∣∣h ∈ E}. Find a

k > max{n}∪{∆(g, h)
∣∣g, h ∈ E∪{f}∪{h

∣∣ah ∈ F}} and a g ∈ ωω \E such that g ↾ k = f ↾ k, g /∈ E,
ag /∈ F , and f differs from g for the first time at the odd number m > k. Letting π be induced by
an isometry of ωω in such a way that π fixes all elements of (F \ {af})∪{ah

∣∣h ∈ E} and π(af ) = ag,
we obtain that π(F ) = F ∪ {ag} \ {af} ∈ Y and therefore {af , ag} = F △ π(F ) ∈ FS≤2(Y ), with
1/d(af , ag) = m+1 an even number. This shows that the color in which FS≤2(Y ) is monochromatic
must be 1; however, running the exact same argument but choosing g in such a way that m = ∆(f, g)
is even shows that this colour must be 0 as well, a contradiction. □

Corollary 5.3. In ZF, there is no provable implication between HT2(k) and Form 82, for any k ≥ 2.

Proof. By Theorem 5.3, the model constructed in Sec. 4 satisfies Form 82 together with ¬HT2(k).
So Form 82 does not imply HT2(k), for any k ≥ 2 (originally in ZFA, but these are all statements
concerning tame finiteness classes and so they are injectively boundable by Theorem 3.2).

Conversely, consider the First Fraenkel Model N1. We know that N1 ⊨ HT2(k) (cf. Theorem 5.1).
We claim that Form 82 fails in N1. To see this, note that the set of atoms A in N1 is amorphous
(this is a classical and easy-to-see fact), while at the same time H-finite (by [2, Proposition 4.2]).
Hence, A must be infinite C-finite, by Proposition 2.4. In particular, Form 82 fails in N1 and so
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HT2(k) does not imply Form 82, for any k ≥ 2 (once again, in ZFA but the statement is transferable
to ZF by Theorem 3.2). □

We note the curious fact that, in each of the models considered in this section (or in the paper), the
principles HT2(k) either fail for all k ≥ 2, or hold for all k ≥ 2. The argument from Proposition 2.1,
however, does not seem to translate well when the finite sums allowed are limited to a bounded
number of summands. Hence, we close the paper with the following natural problem.

Question 5.2. Are all the statements HT2(k), for varying k ≥ 2, equivalent over ZF? Does there
exist a ZF model satisfying, e.g., HT2(2) but not HT2(3)?
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