Strong Failures of Higher Analogs of Hindman’s
Theorem

David Fernandez-Bret6n
(joint work with Assaf Rinot)

djfernan@umich.edu
http://www-personal.umich.edu/~djfernan

Department of Mathematics,
University of Michigan

AMS Sectional Meeting

Denver, October 8, 2016 M

UNIVERSITY OF
MICHIGAN

D. Fernandez (joint with A. Rinot) (Michigan) Failures of Hindman’s Theorem AMS - 08/10/2016 1/9



Introduction

G will always be a commutative cancellative semigroup, additively denoted, of
any cardinality.
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Introduction

G will always be a commutative cancellative semigroup, additively denoted, of
any cardinality.

If X C G, we will define the set of finite sums of X to be

FS(X)={x1+ - +an/neNand zi,...,z, € X are distinct}.
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Introduction

G will always be a commutative cancellative semigroup, additively denoted, of
any cardinality.

If X C G, we will define the set of finite sums of X to be

FS(X)={x1+ - +an/neNand zi,...,z, € X are distinct}.

Theorem (Galvin/Glazer/Hindman)

For every commutative cancellative semigroup G and every colouring
c: G — 2 with two colours, there exists an infinite X C G such that FS(X) is
monochromatic.
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Introduction

G will always be a commutative cancellative semigroup, additively denoted, of
any cardinality.

If X C G, we will define the set of finite sums of X to be

FS(X)={x1+ - +an/neNand zi,...,z, € X are distinct}.

Theorem (Galvin/Glazer/Hindman)

For every commutative cancellative semigroup G and every colouring
c: G — 2 with two colours, there exists an infinite X C G such that FS(X) is
monochromatic.

In all known proofs of this result, the set X is constructed by means

of a recursion with w steps. M
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An uncountable version?

Question

Is it possible to find, given a colouring ¢ : G — 2 of an uncountable
commutative cancellative semigroup, an uncountable X with FS(X)
monochromatic?
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An uncountable version?

Question

Is it possible to find, given a colouring ¢ : G — 2 of an uncountable
commutative cancellative semigroup, an uncountable X with FS(X)
monochromatic?

Theorem

For every uncountable commutative cancellative semigroup G there exists a
colouring ¢ : G — 2 such that whenever X C G is uncountable, FS(X) is not
monochromatic.
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An algebraic interlude

Our key algebraic tool to treat these problems is the following result:

Theorem

Let G be any commutative cancellative semigroup of cardinality k > w. Then
there are countable abelian groups G, o < k, such that G embeds into

PGa=1ze]]GCa

x(a) = 0 for all but finitely many o < &
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An algebraic interlude

Our key algebraic tool to treat these problems is the following result:

Theorem

Let G be any commutative cancellative semigroup of cardinality k > w. Then
there are countable abelian groups G, o < k, such that G embeds into

@Ga:{erG

a<k

= 0 for all but finitely many o < /{}

Note that, if ¢ : @, ., Go — 2 is a “bad” colouring, then sois ¢ | G. Thus
from now on we will assume without loss of generality that G =
where each G, is countable.

a<k ou
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An algebraic interlude

Our key algebraic tool to treat these problems is the following result:

Theorem

Let G be any commutative cancellative semigroup of cardinality k > w. Then
there are countable abelian groups G, o < k, such that G embeds into

@Ga:{erG

a<k

= 0 for all but finitely many o < /{}

Note that, if ¢ : @, ., Go — 2 is a “bad” colouring, then so is ¢ | G. Thus
from now on we will assume without loss of generality that G = @, . G,
where each G,, is countable.

Givenz € @, _,. G, we will define the support of « to be

supp(z) = {a < k|z(a) # 0} € [5] M

a<k
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Back to uncountable analogs

Theorem

For every uncountable commutative cancellative semigroup G there exists a

colouring ¢ : G — 2 such that whenever X C G is uncountable, FS(X) is not
monochromatic.
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Back to uncountable analogs

Theorem

For every uncountable commutative cancellative semigroup G there exists a

colouring ¢ : G — 2 such that whenever X C G is uncountable, FS(X) is
omnichromatic.
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Back to uncountable analogs

Theorem

For every uncountable commutative cancellative semigroup G there exists a

colouring ¢ : G — m such that whenever X C G is uncountable, FS(X) is
omnichromatic.
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colouring ¢ : G — m such that whenever X C G is uncountable, FS(X) is
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Back to uncountable analogs

Theorem

For every uncountable commutative cancellative semigroup G there exists a

colouring ¢ : G — w such that whenever X C G is uncountable, FS(X) is
omnichromatic.
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Back to uncountable analogs

Theorem

For every uncountable commutative cancellative semigroup G there exists a
colouring ¢ : G — w such that whenever X C G is uncountable, FS(X) is
omnichromatic.

We denote the statement above by G — [w;]FS (recall the square-bracket
notation for higher analogs of Ramsey’s theorem).
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Back to uncountable analogs

Theorem

For every uncountable commutative cancellative semigroup G there exists a
colouring ¢ : G — w such that whenever X C G is uncountable, FS(X) is
omnichromatic.

We denote the statement above by G — [w;]FS (recall the square-bracket
notation for higher analogs of Ramsey’s theorem).

Under which circumstances can we increase the number of colours?
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Back to uncountable analogs

Theorem

For every uncountable commutative cancellative semigroup G there exists a
colouring ¢ : G — w such that whenever X C G is uncountable, FS(X) is
omnichromatic.

We denote the statement above by G — [w;]FS (recall the square-bracket
notation for higher analogs of Ramsey’s theorem).

Under which circumstances can we increase the number of colours?

Lemma

If G is commutative cancellative of cardinality v > w, then there exists a
d : G — [k]<¥ such that for every uncountable X C G, there exists an A C k
with |A| = | X| and [A]<* C d[FS(X)].

A
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Can we increase the number of colours? Yes and no...

Theorem

For all cardinals A, k, 0 with w, < X < &, the following are equivalent:
o K- [N;¥,
@ G —» [MEFS for every commutative cancellative semigroup of cardinality «,
@ G —» [MES for some commutative cancellative semigroup of cardinality .
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Can we increase the number of colours? Yes and no...

Theorem

For all cardinals A, k, 0 with w, < X < &, the following are equivalent:
o r - N5,
@ G —» [MEFS for every commutative cancellative semigroup of cardinality «,

@ G —» [MES for some commutative cancellative semigroup of cardinality .

Corollary

It is consistent with ZFC (e.g. if V.= L, where k is the least inaccessible) that
for every commutative cancellative G, G - [0]5° holds for every uncountable
6.
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Can we increase the number of colours? Yes and no...

Theorem

For all cardinals A, k, 0 with w, < X < &, the following are equivalent:
o r - N5,
@ G —» [MEFS for every commutative cancellative semigroup of cardinality «,

@ G —» [MES for some commutative cancellative semigroup of cardinality .

Corollary

It is consistent with ZFC (e.g. if V.= L, where k is the least inaccessible) that
for every commutative cancellative G, G - [0]5° holds for every uncountable
6.

Corollary

Modulo large cardinals it is consistent with ZFC (e.g. after forcing to add «
Cohen reals, where « is an w,-Erd8s cardinal in the ground model) that
R — [wl]FS

w1 ”
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A new set-theoretic principle

We now attempt to obtain results along the same lines, but replacing F'S with
FS,, where for X C G we define FS3(X) = {z + y|z,y € X are distinct}.
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A new set-theoretic principle

We now attempt to obtain results along the same lines, but replacing F'S with
FS,, where for X C G we define FS3(X) = {z + y|z,y € X are distinct}.

Definition

Given cardinals x > 6, the symbol S*(k, ) will denote the following statement:
there exists a colouring d : [k]<“ — @ such that, if X, Y C [x]<“ are families
satisfying |X'| = || = &, then for every § < 6 there are elements = € X and

y € Y such that d(z) = 6 whenevera Ay CzCaUy.
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A new set-theoretic principle

We now attempt to obtain results along the same lines, but replacing F'S with
FS,, where for X C G we define FS3(X) = {z + y|z,y € X are distinct}.

Definition

Given cardinals x > 6, the symbol S*(k, ) will denote the following statement:
there exists a colouring d : [k]<“ — @ such that, if X, Y C [x]<“ are families
satisfying |X'| = || = &, then for every § < 6 there are elements = € X and

y € Y such that d(z) = 6 whenevera Ay CzCaUy.

Theorem

Letk > 0 > wy. If S*(k,0) holds, then for every commutative cancellative G
with |G| = k, G - [K]5>2.
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A new set-theoretic principle

We now attempt to obtain results along the same lines, but replacing F'S with
FS,, where for X C G we define FS3(X) = {z + y|z,y € X are distinct}.

Definition
Given cardinals x > 6, the symbol S*(k, ) will denote the following statement:
there exists a colouring d : [k]<¥ — 6 such that, if X', Y C [x]<* are families

satisfying |X'| = || = &, then for every § < 6 there are elements = € X and
y € Y such that d(z) = 6 whenevera Ay CzCaUy.

Theorem

Letk > 0 > wy. If S*(k,0) holds, then for every commutative cancellative G
with |G| = k, G - [x]5°2. In fact, the following stronger statement holds: there
exists a colouring ¢ : G — 0 such that for every two sets X, Y C G with

|X| =|Y|==r, thesumset X +Y = {z +y|z € X andy € Y} attains all
possible colours (that is, c[X + Y] = 0).
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Which « are good for this?

Recall that the combinatorial principle Pr;(k, A, 0, x) states the existence of a
colouring ¢ : [x]? — 6 such that, whenever X C [k]<X has size \ and is
pairwise disjoint, for all § < 6 we can find two distinct =,y € X’ such that

el x y] = {3}.
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Vool |
Recall that the combinatorial principle Pr;(k, A, 0, x) states the existence of a
colouring ¢ : [x]? — 6 such that, whenever X C [k]<X has size \ and is

pairwise disjoint, for all § < 6 we can find two distinct =,y € X’ such that
clz x y] = {8}

Fact

Ifcf(rk) = k > w1 admits a nonreflecting stationary set, then Pr1(k, k, k, w)
holds (for example, if k. = A\ for A = cf(\) > wy).
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Which « are good for this?

Recall that the combinatorial principle Pr;(k, A, 0, x) states the existence of a
colouring ¢ : [x]? — 6 such that, whenever X C [k]<X has size \ and is
pairwise disjoint, for all § < 6 we can find two distinct =,y € X’ such that

clx x y] = {6}.

Fact

Ifcf(rk) = k > w1 admits a nonreflecting stationary set, then Pr1(k, k, k, w)
holds (for example, if k. = A\ for A = cf(\) > wy).

Theorem

Ifk =cf(k) > wy and 6 < k, then Pry(k, k,0,w) implies S*(k, 6). In particular,
if Pry (K, K, 0,w) holds then G — [x]5°* whenever |G| = .
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Which « are good for this?

Recall that the combinatorial principle Pr;(k, A, 0, x) states the existence of a
colouring ¢ : [x]? — 6 such that, whenever X C [k]<X has size \ and is
pairwise disjoint, for all § < 6 we can find two distinct =,y € X’ such that

clz x y] = {0}.
Fact

Ifcf(rk) = k > w1 admits a nonreflecting stationary set, then Pr1(k, k, k, w)
holds (for example, if k. = A\ for A = cf(\) > wy).

Theorem

Ifk =cf(k) > wy and 6 < k, then Pry(k, k,0,w) implies S*(k, 6). In particular,
if Pry (K, K, 0,w) holds then G — [x]5°* whenever |G| = .

Theorem

If k is singular, then S*(cf(x), ) implies that S*(k, 0). In particular, if k is such
that cf (k) > wy admits a nonreflecting stationary subset, then S*(k, cf(k))
holds, and consequently, G - (k)" fs(’;) for every commutative cancellative G' of

cardinality k.
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Some complementary results

The statement Pry (wy, w1, w1, w) is not provable in ZFC. However, it is possible
to prove the following.
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Some complementary results

The statement Pry (wy, w1, w1, w) is not provable in ZFC. However, it is possible
to prove the following.
Theorem

The principle S*(w1,w1) holds. Consequently, whenever G is a commutative
cancellative semigroup of cardinality x, with cf(r) = w1, then G — [k]E52.
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Some complementary results

The statement Pry (wy, w1, w1, w) is not provable in ZFC. However, it is possible
to prove the following.

Theorem

The principle S*(w1,w1) holds. Consequently, whenever G is a commutative
cancellative semigroup of cardinality x, with cf(r) = w1, then G — [k]E52.

Theorem

Let x be an infinite cardinal satisfying 2<" = k. Then for every commutative
cancellative G such that cf(|G|) = cf(2%), we have that G + [|G||E®2. In
particular, the statement R — [c|F'S2 holds.
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Some complementary results

The statement Pry (wy, w1, w1, w) is not provable in ZFC. However, it is possible
to prove the following.

Theorem

The principle S*(w1,w1) holds. Consequently, whenever G is a commutative
cancellative semigroup of cardinality x, with cf(r) = w1, then G — [k]E52.

Theorem

Let x be an infinite cardinal satisfying 2<" = k. Then for every commutative
cancellative G such that cf(|G|) = cf(2%), we have that G + [|G||E®2. In
particular, the statement R — [c|F'S2 holds.

Theorem

If ¢ is regular, and not weakly compact in L, then R - [¢]F52. On the other
hand, after adding « Cohen reals to a model where « is weakly compact, we
obtain R — [¢]E5z2.

4
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