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Introduction

G will always be a commutative cancellative semigroup, additively denoted, of
any cardinality.

If X ⊆ G, we will define the set of finite sums of X to be

FS(X) = {x1 + · · ·+ xn
∣∣n ∈ N and x1, . . . , xn ∈ X are distinct}.

Theorem (Galvin/Glazer/Hindman)

For every commutative cancellative semigroup G and every colouring
c : G −→ 2 with two colours, there exists an infinite X ⊆ G such that FS(X) is
monochromatic.

In all known proofs of this result, the set X is constructed by means
of a recursion with ω steps.
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An uncountable version?

Question
Is it possible to find, given a colouring c : G −→ 2 of an uncountable
commutative cancellative semigroup, an uncountable X with FS(X)
monochromatic?

Theorem
For every uncountable commutative cancellative semigroup G there exists a
colouring c : G −→ 2 such that whenever X ⊆ G is uncountable, FS(X) is not
monochromatic.
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An algebraic interlude

Our key algebraic tool to treat these problems is the following result:

Theorem
Let G be any commutative cancellative semigroup of cardinality κ > ω. Then
there are countable abelian groups Gα, α < κ, such that G embeds into

⊕
α<κ

Gα =

{
x ∈

∏
α<κ

Gα

∣∣∣∣x(α) = 0 for all but finitely many α < κ

}
.

Note that, if c :
⊕

α<κGα −→ 2 is a “bad” colouring, then so is c � G. Thus
from now on we will assume without loss of generality that G =

⊕
α<κGα,

where each Gα is countable.

Given x ∈
⊕

α<κGα, we will define the support of x to be

supp(x) = {α < κ
∣∣x(α) 6= 0} ∈ [κ]<ω.

D. Fernández (joint with A. Rinot) (Michigan) Failures of Hindman’s Theorem AMS – 08/10/2016 4 / 9



An algebraic interlude

Our key algebraic tool to treat these problems is the following result:

Theorem
Let G be any commutative cancellative semigroup of cardinality κ > ω. Then
there are countable abelian groups Gα, α < κ, such that G embeds into

⊕
α<κ

Gα =

{
x ∈

∏
α<κ

Gα

∣∣∣∣x(α) = 0 for all but finitely many α < κ

}
.

Note that, if c :
⊕

α<κGα −→ 2 is a “bad” colouring, then so is c � G. Thus
from now on we will assume without loss of generality that G =

⊕
α<κGα,

where each Gα is countable.

Given x ∈
⊕

α<κGα, we will define the support of x to be

supp(x) = {α < κ
∣∣x(α) 6= 0} ∈ [κ]<ω.

D. Fernández (joint with A. Rinot) (Michigan) Failures of Hindman’s Theorem AMS – 08/10/2016 4 / 9



An algebraic interlude

Our key algebraic tool to treat these problems is the following result:

Theorem
Let G be any commutative cancellative semigroup of cardinality κ > ω. Then
there are countable abelian groups Gα, α < κ, such that G embeds into

⊕
α<κ

Gα =

{
x ∈

∏
α<κ

Gα

∣∣∣∣x(α) = 0 for all but finitely many α < κ

}
.

Note that, if c :
⊕

α<κGα −→ 2 is a “bad” colouring, then so is c � G. Thus
from now on we will assume without loss of generality that G =

⊕
α<κGα,

where each Gα is countable.

Given x ∈
⊕

α<κGα, we will define the support of x to be

supp(x) = {α < κ
∣∣x(α) 6= 0} ∈ [κ]<ω.

D. Fernández (joint with A. Rinot) (Michigan) Failures of Hindman’s Theorem AMS – 08/10/2016 4 / 9



Back to uncountable analogs

Theorem
For every uncountable commutative cancellative semigroup G there exists a
colouring c : G −→ 2 such that whenever X ⊆ G is uncountable, FS(X) is not
monochromatic.

We denote the statement above by G9 [ω1]
FS
ω (recall the square-bracket

notation for higher analogs of Ramsey’s theorem).

Under which circumstances can we increase the number of colours?

Lemma
If G is commutative cancellative of cardinality κ > ω, then there exists a
d : G −→ [κ]<ω such that for every uncountable X ⊆ G, there exists an A ⊆ κ
with |A| = |X| and [A]<ω ⊆ d[FS(X)].
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Can we increase the number of colours? Yes and no...

Theorem
For all cardinals λ, κ, θ with ω1 ≤ λ ≤ κ, the following are equivalent:

κ9 [λ]<ωθ ,
G9 [λ]FSθ for every commutative cancellative semigroup of cardinality κ,
G9 [λ]FSθ for some commutative cancellative semigroup of cardinality κ.

Corollary

It is consistent with ZFC (e.g. if V = Lκ where κ is the least inaccessible) that
for every commutative cancellative G, G9 [θ]FSθ holds for every uncountable
θ.

Corollary

Modulo large cardinals it is consistent with ZFC (e.g. after forcing to add κ
Cohen reals, where κ is an ω1-Erdős cardinal in the ground model) that
R→ [ω1]

FS
ω1

.
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A new set-theoretic principle

We now attempt to obtain results along the same lines, but replacing FS with
FS2, where for X ⊆ G we define FS2(X) = {x+ y

∣∣x, y ∈ X are distinct}.

Definition

Given cardinals κ ≥ θ, the symbol S∗(κ, θ) will denote the following statement:
there exists a colouring d : [κ]<ω −→ θ such that, if X ,Y ⊆ [κ]<ω are families
satisfying |X | = |Y| = κ, then for every δ < θ there are elements x ∈ X and
y ∈ Y such that d(z) = δ whenever x4 y ⊆ z ⊆ x ∪ y.

Theorem

Let κ ≥ θ ≥ ω1. If S∗(κ, θ) holds, then for every commutative cancellative G
with |G| = κ, G9 [κ]FS2

θ . In fact, the following stronger statement holds: there
exists a colouring c : G −→ θ such that for every two sets X,Y ⊆ G with
|X| = |Y | = κ, the sumset X + Y = {x+ y

∣∣x ∈ X and y ∈ Y } attains all
possible colours (that is, c[X + Y ] = θ).
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Which κ are good for this?

Recall that the combinatorial principle Pr1(κ, λ, θ, χ) states the existence of a
colouring c : [κ]2 −→ θ such that, whenever X ⊆ [κ]<χ has size λ and is
pairwise disjoint, for all δ < θ we can find two distinct x, y ∈ X such that
c[x× y] = {δ}.

Fact

If cf(κ) = κ > ω1 admits a nonreflecting stationary set, then Pr1(κ, κ, κ, ω)
holds (for example, if κ = λ+ for λ = cf(λ) ≥ ω1).

Theorem

If κ = cf(κ) ≥ ω1 and θ ≤ κ, then Pr1(κ, κ, θ, ω) implies S∗(κ, θ). In particular,
if Pr1(κ, κ, θ, ω) holds then G9 [κ]FS2

θ whenever |G| = κ.

Theorem

If κ is singular, then S∗(cf(κ), θ) implies that S∗(κ, θ). In particular, if κ is such
that cf(κ) > ω1 admits a nonreflecting stationary subset, then S∗(κ, cf(κ))
holds, and consequently, G9 [κ]FS2

cf(κ) for every commutative cancellative G of
cardinality κ.
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Some complementary results

The statement Pr1(ω1, ω1, ω1, ω) is not provable in ZFC. However, it is possible
to prove the following.

Theorem

The principle S∗(ω1, ω1) holds. Consequently, whenever G is a commutative
cancellative semigroup of cardinality κ, with cf(κ) = ω1, then G9 [κ]FS2

ω1
.

Theorem

Let κ be an infinite cardinal satisfying 2<κ = κ. Then for every commutative
cancellative G such that cf(|G|) = cf(2κ), we have that G9 [|G|]FS2

ω . In
particular, the statement R 9 [c]FS2

ω holds.

Theorem

If c is regular, and not weakly compact in L, then R 9 [c]FS2
c . On the other

hand, after adding κ Cohen reals to a model where κ is weakly compact, we
obtain R→ [c]FS2

ω1
.

D. Fernández (joint with A. Rinot) (Michigan) Failures of Hindman’s Theorem AMS – 08/10/2016 9 / 9
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