Strong Failures of Higher Analogs of Hindman's Theorem

David Fernández-Bretón (joint work with Assaf Rinot)

djfernan@umich.edu http://www-personal.umich.edu/~djfernan

> Department of Mathematics, University of Michigan

AMS Sectional Meeting Denver, October 8, 2016

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

AMS - 08/10/2016 1 / 9

 ${\it G}$ will always be a commutative cancellative semigroup, additively denoted, of any cardinality.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

AMS - 08/10/2016 2 / 9

G will always be a commutative cancellative semigroup, additively denoted, of any cardinality.

If $X \subseteq G$, we will define the set of finite sums of X to be

 $FS(X) = \{x_1 + \dots + x_n | n \in \mathbb{N} \text{ and } x_1, \dots, x_n \in X \text{ are distinct} \}.$

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

 ${\it G}$ will always be a commutative cancellative semigroup, additively denoted, of any cardinality.

If $X \subseteq G$, we will define the set of finite sums of X to be

 $FS(X) = \{x_1 + \dots + x_n | n \in \mathbb{N} \text{ and } x_1, \dots, x_n \in X \text{ are distinct} \}.$

Theorem (Galvin/Glazer/Hindman)

For every commutative cancellative semigroup G and every colouring $c: G \longrightarrow 2$ with two colours, there exists an infinite $X \subseteq G$ such that FS(X) is monochromatic.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

AMS - 08/10/2016 2 / 9

 ${\it G}$ will always be a commutative cancellative semigroup, additively denoted, of any cardinality.

If $X \subseteq G$, we will define the set of finite sums of X to be

 $FS(X) = \{x_1 + \dots + x_n | n \in \mathbb{N} \text{ and } x_1, \dots, x_n \in X \text{ are distinct} \}.$

Theorem (Galvin/Glazer/Hindman)

For every commutative cancellative semigroup G and every colouring $c: G \longrightarrow 2$ with two colours, there exists an infinite $X \subseteq G$ such that FS(X) is monochromatic.

In all known proofs of this result, the set X is constructed by means of a recursion with ω steps.

Question

Is it possible to find, given a colouring $c: G \longrightarrow 2$ of an uncountable commutative cancellative semigroup, an uncountable X with FS(X) monochromatic?

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

AMS - 08/10/2016 3 / 9

Question

Is it possible to find, given a colouring $c: G \longrightarrow 2$ of an uncountable commutative cancellative semigroup, an uncountable X with FS(X) monochromatic?

Theorem

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

• □ ▶ • □ ▶ • □ ▶ •

Our key algebraic tool to treat these problems is the following result:

Theorem

Let *G* be any commutative cancellative semigroup of cardinality $\kappa > \omega$. Then there are countable abelian groups G_{α} , $\alpha < \kappa$, such that *G* embeds into

$$\bigoplus_{\alpha < \kappa} G_{\alpha} = \left\{ x \in \prod_{\alpha < \kappa} G_{\alpha} \middle| x(\alpha) = 0 \text{ for all but finitely many } \alpha < \kappa \right\}.$$

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

Our key algebraic tool to treat these problems is the following result:

Theorem

Let *G* be any commutative cancellative semigroup of cardinality $\kappa > \omega$. Then there are countable abelian groups G_{α} , $\alpha < \kappa$, such that *G* embeds into

$$\bigoplus_{\alpha < \kappa} G_{\alpha} = \left\{ x \in \prod_{\alpha < \kappa} G_{\alpha} \middle| x(\alpha) = 0 \text{ for all but finitely many } \alpha < \kappa \right\}$$

Note that, if $c: \bigoplus_{\alpha < \kappa} G_{\alpha} \longrightarrow 2$ is a "bad" colouring, then so is $c \upharpoonright G$. Thus from now on we will assume without loss of generality that $G = \bigoplus_{\alpha < \kappa} G_{\alpha}$, where each G_{α} is countable.

Our key algebraic tool to treat these problems is the following result:

Theorem

Let *G* be any commutative cancellative semigroup of cardinality $\kappa > \omega$. Then there are countable abelian groups G_{α} , $\alpha < \kappa$, such that *G* embeds into

$$\bigoplus_{\alpha < \kappa} G_{\alpha} = \left\{ x \in \prod_{\alpha < \kappa} G_{\alpha} \middle| x(\alpha) = 0 \text{ for all but finitely many } \alpha < \kappa \right\}$$

Note that, if $c: \bigoplus_{\alpha < \kappa} G_{\alpha} \longrightarrow 2$ is a "bad" colouring, then so is $c \upharpoonright G$. Thus from now on we will assume without loss of generality that $G = \bigoplus_{\alpha < \kappa} G_{\alpha}$, where each G_{α} is countable.

Given $x \in \bigoplus_{\alpha < \kappa} G_{\alpha}$, we will define the **support** of *x* to be

$$\operatorname{supp}(x) = \{ \alpha < \kappa | x(\alpha) \neq 0 \} \in [\kappa]^{<\omega}.$$

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

Image: Image:

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, FS(X) is omnichromatic.

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow m$ such that whenever $X \subseteq G$ is uncountable, FS(X) is omnichromatic.

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow m$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

Image: Image:

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow m$ such that whenever $X \subseteq G$ is uncountable, FS(X) is omnichromatic.

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow \omega$ such that whenever $X \subseteq G$ is uncountable, FS(X) is omnichromatic.

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow \omega$ such that whenever $X \subseteq G$ is uncountable, FS(X) is omnichromatic.

We denote the statement above by $G \rightarrow [\omega_1]^{FS}_{\omega}$ (recall the square-bracket notation for higher analogs of Ramsey's theorem).

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow \omega$ such that whenever $X \subseteq G$ is uncountable, FS(X) is omnichromatic.

We denote the statement above by $G \not\rightarrow [\omega_1]^{FS}_{\omega}$ (recall the square-bracket notation for higher analogs of Ramsey's theorem).

Under which circumstances can we increase the number of colours?

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow \omega$ such that whenever $X \subseteq G$ is uncountable, FS(X) is omnichromatic.

We denote the statement above by $G \not\rightarrow [\omega_1]^{FS}_{\omega}$ (recall the square-bracket notation for higher analogs of Ramsey's theorem).

Under which circumstances can we increase the number of colours?

Lemma

If *G* is commutative cancellative of cardinality $\kappa > \omega$, then there exists a $d: G \longrightarrow [\kappa]^{<\omega}$ such that for every uncountable $X \subseteq G$, there exists an $A \subseteq \kappa$ with |A| = |X| and $[A]^{<\omega} \subseteq d[FS(X)]$.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

For all cardinals λ, κ, θ with $\omega_1 \leq \lambda \leq \kappa$, the following are equivalent:

- $\kappa \nrightarrow [\lambda]_{\theta}^{<\omega}$,
- $G \nrightarrow [\lambda]_{\theta}^{FS}$ for every commutative cancellative semigroup of cardinality κ ,
- $G \nrightarrow [\lambda]_{\theta}^{FS}$ for some commutative cancellative semigroup of cardinality κ .

< □ > < □ > < □ > < □ > <</pre>

For all cardinals λ, κ, θ with $\omega_1 \leq \lambda \leq \kappa$, the following are equivalent:

- $\kappa \nrightarrow [\lambda]_{\theta}^{<\omega}$,
- $G \nrightarrow [\lambda]_{\theta}^{FS}$ for every commutative cancellative semigroup of cardinality κ ,
- $G \nrightarrow [\lambda]_{\theta}^{FS}$ for some commutative cancellative semigroup of cardinality κ .

Corollary

It is consistent with ZFC (e.g. if $\mathbf{V} = \mathbf{L}_{\kappa}$ where κ is the least inaccessible) that for every commutative cancellative $G, G \not\rightarrow [\theta]_{\theta}^{\text{FS}}$ holds for every uncountable θ .

For all cardinals λ, κ, θ with $\omega_1 \leq \lambda \leq \kappa$, the following are equivalent:

- $\kappa \nrightarrow [\lambda]_{\theta}^{<\omega}$,
- $G \nrightarrow [\lambda]_{\theta}^{\text{FS}}$ for every commutative cancellative semigroup of cardinality κ ,
- $G \nrightarrow [\lambda]_{\theta}^{FS}$ for some commutative cancellative semigroup of cardinality κ .

Corollary

It is consistent with ZFC (e.g. if $\mathbf{V} = \mathbf{L}_{\kappa}$ where κ is the least inaccessible) that for every commutative cancellative $G, G \not\rightarrow [\theta]_{\theta}^{\text{FS}}$ holds for every uncountable θ .

Corollary

Modulo large cardinals it is consistent with ZFC (e.g. after forcing to add κ Cohen reals, where κ is an ω_1 -Erdős cardinal in the ground model) that $\mathbb{R} \to [\omega_1]_{\omega_1}^{\mathrm{FS}}$.

D. Fernández (joint with A. Rinot) (Michigan)

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

AMS - 08/10/2016 7 / 9

Definition

Given cardinals $\kappa \geq \theta$, the symbol $S^*(\kappa, \theta)$ will denote the following statement: there exists a colouring $d : [\kappa]^{<\omega} \longrightarrow \theta$ such that, if $\mathcal{X}, \mathcal{Y} \subseteq [\kappa]^{<\omega}$ are families satisfying $|\mathcal{X}| = |\mathcal{Y}| = \kappa$, then for every $\delta < \theta$ there are elements $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ such that $d(z) = \delta$ whenever $x \bigtriangleup y \subseteq z \subseteq x \cup y$.

Definition

Given cardinals $\kappa \geq \theta$, the symbol $S^*(\kappa, \theta)$ will denote the following statement: there exists a colouring $d : [\kappa]^{<\omega} \longrightarrow \theta$ such that, if $\mathcal{X}, \mathcal{Y} \subseteq [\kappa]^{<\omega}$ are families satisfying $|\mathcal{X}| = |\mathcal{Y}| = \kappa$, then for every $\delta < \theta$ there are elements $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ such that $d(z) = \delta$ whenever $x \bigtriangleup y \subseteq z \subseteq x \cup y$.

Theorem

Let $\kappa \geq \theta \geq \omega_1$. If $S^*(\kappa, \theta)$ holds, then for every commutative cancellative G with $|G| = \kappa$, $G \nrightarrow [\kappa]_{\theta}^{FS_2}$.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

イロト イヨト イヨト イヨト

Definition

Given cardinals $\kappa \geq \theta$, the symbol $S^*(\kappa, \theta)$ will denote the following statement: there exists a colouring $d : [\kappa]^{<\omega} \longrightarrow \theta$ such that, if $\mathcal{X}, \mathcal{Y} \subseteq [\kappa]^{<\omega}$ are families satisfying $|\mathcal{X}| = |\mathcal{Y}| = \kappa$, then for every $\delta < \theta$ there are elements $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ such that $d(z) = \delta$ whenever $x \bigtriangleup y \subseteq z \subseteq x \cup y$.

Theorem

Let $\kappa \ge \theta \ge \omega_1$. If $S^*(\kappa, \theta)$ holds, then for every commutative cancellative Gwith $|G| = \kappa$, $G \nrightarrow [\kappa]_{\theta}^{FS_2}$. In fact, the following stronger statement holds: there exists a colouring $c : G \longrightarrow \theta$ such that for every two sets $X, Y \subseteq G$ with $|X| = |Y| = \kappa$, the sumset $X + Y = \{x + y | x \in X \text{ and } y \in Y\}$ attains all possible colours (that is, $c[X + Y] = \theta$).

D. Fernández (joint with A. Rinot) (Michigan)

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Recall that the combinatorial principle $\Pr_1(\kappa, \lambda, \theta, \chi)$ states the existence of a colouring $c : [\kappa]^2 \longrightarrow \theta$ such that, whenever $\mathcal{X} \subseteq [\kappa]^{<\chi}$ has size λ and is pairwise disjoint, for all $\delta < \theta$ we can find two distinct $x, y \in \mathcal{X}$ such that $c[x \times y] = \{\delta\}$.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

AMS - 08/10/2016 8 / 9

Recall that the combinatorial principle $Pr_1(\kappa, \lambda, \theta, \chi)$ states the existence of a colouring $c : [\kappa]^2 \longrightarrow \theta$ such that, whenever $\mathcal{X} \subseteq [\kappa]^{<\chi}$ has size λ and is pairwise disjoint, for all $\delta < \theta$ we can find two distinct $x, y \in \mathcal{X}$ such that $c[x \times y] = \{\delta\}$.

Fact

If $cf(\kappa) = \kappa > \omega_1$ admits a nonreflecting stationary set, then $Pr_1(\kappa, \kappa, \kappa, \omega)$ holds (for example, if $\kappa = \lambda^+$ for $\lambda = cf(\lambda) \ge \omega_1$).

Recall that the combinatorial principle $Pr_1(\kappa, \lambda, \theta, \chi)$ states the existence of a colouring $c : [\kappa]^2 \longrightarrow \theta$ such that, whenever $\mathcal{X} \subseteq [\kappa]^{<\chi}$ has size λ and is pairwise disjoint, for all $\delta < \theta$ we can find two distinct $x, y \in \mathcal{X}$ such that $c[x \times y] = \{\delta\}$.

Fact

If $cf(\kappa) = \kappa > \omega_1$ admits a nonreflecting stationary set, then $Pr_1(\kappa, \kappa, \kappa, \omega)$ holds (for example, if $\kappa = \lambda^+$ for $\lambda = cf(\lambda) \ge \omega_1$).

Theorem

If $\kappa = cf(\kappa) \ge \omega_1$ and $\theta \le \kappa$, then $Pr_1(\kappa, \kappa, \theta, \omega)$ implies $S^*(\kappa, \theta)$. In particular, if $Pr_1(\kappa, \kappa, \theta, \omega)$ holds then $G \nrightarrow [\kappa]_{\theta}^{FS_2}$ whenever $|G| = \kappa$.

D. Fernández (joint with A. Rinot) (Michigan)

• □ ▶ • □ ▶ • □ ▶ •

Recall that the combinatorial principle $Pr_1(\kappa, \lambda, \theta, \chi)$ states the existence of a colouring $c : [\kappa]^2 \longrightarrow \theta$ such that, whenever $\mathcal{X} \subseteq [\kappa]^{<\chi}$ has size λ and is pairwise disjoint, for all $\delta < \theta$ we can find two distinct $x, y \in \mathcal{X}$ such that $c[x \times y] = \{\delta\}$.

Fact

If $cf(\kappa) = \kappa > \omega_1$ admits a nonreflecting stationary set, then $Pr_1(\kappa, \kappa, \kappa, \omega)$ holds (for example, if $\kappa = \lambda^+$ for $\lambda = cf(\lambda) \ge \omega_1$).

Theorem

If $\kappa = cf(\kappa) \ge \omega_1$ and $\theta \le \kappa$, then $Pr_1(\kappa, \kappa, \theta, \omega)$ implies $S^*(\kappa, \theta)$. In particular, if $Pr_1(\kappa, \kappa, \theta, \omega)$ holds then $G \nrightarrow [\kappa]_{\theta}^{FS_2}$ whenever $|G| = \kappa$.

Theorem

If κ is singular, then $S^*(cf(\kappa), \theta)$ implies that $S^*(\kappa, \theta)$. In particular, if κ is such that $cf(\kappa) > \omega_1$ admits a nonreflecting stationary subset, then $S^*(\kappa, cf(\kappa))$ holds, and consequently, $G \not\rightarrow [\kappa]_{cf(\kappa)}^{FS_2}$ for every commutative cancellative G of cardinality κ .

The statement $\Pr_1(\omega_1, \omega_1, \omega_1, \omega)$ is not provable in ZFC. However, it is possible to prove the following.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

AMS - 08/10/2016 9 / 9

The statement $\Pr_1(\omega_1, \omega_1, \omega_1, \omega)$ is not provable in ZFC. However, it is possible to prove the following.

Theorem

The principle $S^*(\omega_1, \omega_1)$ holds. Consequently, whenever G is a commutative cancellative semigroup of cardinality κ , with $cf(\kappa) = \omega_1$, then $G \not\rightarrow [\kappa]_{\omega_1}^{FS_2}$.

The statement $Pr_1(\omega_1, \omega_1, \omega_1, \omega)$ is not provable in ZFC. However, it is possible to prove the following.

Theorem

The principle $S^*(\omega_1, \omega_1)$ holds. Consequently, whenever G is a commutative cancellative semigroup of cardinality κ , with $cf(\kappa) = \omega_1$, then $G \not\rightarrow [\kappa]_{\omega_1}^{FS_2}$.

Theorem

Let κ be an infinite cardinal satisfying $2^{<\kappa} = \kappa$. Then for every commutative cancellative G such that $cf(|G|) = cf(2^{\kappa})$, we have that $G \nleftrightarrow [|G|]_{\omega}^{FS_2}$. In particular, the statement $\mathbb{R} \nleftrightarrow [c]_{\omega}^{FS_2}$ holds.

• □ ▶ • □ ▶ • □ ▶ •

The statement $Pr_1(\omega_1, \omega_1, \omega_1, \omega)$ is not provable in ZFC. However, it is possible to prove the following.

Theorem

The principle $S^*(\omega_1, \omega_1)$ holds. Consequently, whenever G is a commutative cancellative semigroup of cardinality κ , with $cf(\kappa) = \omega_1$, then $G \not\rightarrow [\kappa]_{\omega_1}^{FS_2}$.

Theorem

Let κ be an infinite cardinal satisfying $2^{<\kappa} = \kappa$. Then for every commutative cancellative G such that $cf(|G|) = cf(2^{\kappa})$, we have that $G \not\rightarrow [|G|]_{\omega}^{FS_2}$. In particular, the statement $\mathbb{R} \not\rightarrow [\mathfrak{c}]_{\omega}^{FS_2}$ holds.

Theorem

If \mathfrak{c} is regular, and not weakly compact in \mathbf{L} , then $\mathbb{R} \not\rightarrow [\mathfrak{c}]_{\mathfrak{c}}^{FS_2}$. On the other hand, after adding κ Cohen reals to a model where κ is weakly compact, we obtain $\mathbb{R} \rightarrow [\mathfrak{c}]_{\omega_1}^{FS_2}$.

・ロト ・回ト ・ヨト ・ヨト