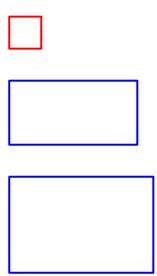
Del cálculo integral a los misterios del infinito

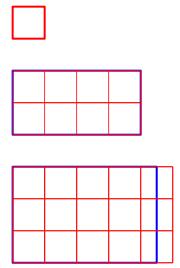
David Fernández Bretón

dfernandezb@ipn.mx
https://dfernandezb.web.app/espanol.html

Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional

Universidad Nacional Federico Villarreal 19 de octubre de 2021

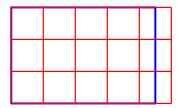




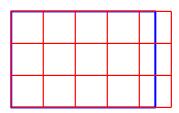
• Que, si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $A(R_2) = A(R_1)$,

- Que, si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $A(R_2) = A(R_1)$,
- Que, si R_1 y R_2 son regiones con $A(R_1 \cap R_2) = 0$, entonces $A(R_1 \cup R_2) = A(R_1) + A(R_2)$.

- Que, si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $A(R_2) = A(R_1)$,
- Que, si R_1 y R_2 son regiones con $A(R_1 \cap R_2) = 0$, entonces $A(R_1 \cup R_2) = A(R_1) + A(R_2)$.

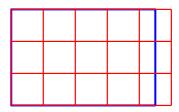


- Que, si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $A(R_2) = A(R_1)$,
- Que, si R_1 y R_2 son regiones con $A(R_1 \cap R_2) = 0$, entonces $A(R_1 \cup R_2) = A(R_1) + A(R_2)$.



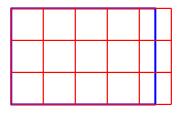
$$A(\square) = A(\square_1 \cup \square_2)$$

- Que, si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $A(R_2) = A(R_1)$,
- Que, si R_1 y R_2 son regiones con $A(R_1 \cap R_2) = 0$, entonces $A(R_1 \cup R_2) = A(R_1) + A(R_2)$.



$$A(\square) = A(\square_1 \cup \square_2)$$
$$= A(\square_1) + A(\square_2)$$

- Que, si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $A(R_2) = A(R_1)$,
- Que, si R_1 y R_2 son regiones con $A(R_1 \cap R_2) = 0$, entonces $A(R_1 \cup R_2) = A(R_1) + A(R_2)$.

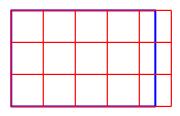


$$A(\square) = A(\square_1 \cup \square_2)$$

$$= A(\square_1) + A(\square_2)$$

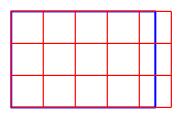
$$= A(\blacksquare) + A(\blacksquare)$$

- Que, si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $A(R_2) = A(R_1)$,
- Que, si R_1 y R_2 son regiones con $A(R_1 \cap R_2) = 0$, entonces $A(R_1 \cup R_2) = A(R_1) + A(R_2)$.



$$\begin{array}{rcl} A(\square) & = & A(\square_1 \cup \square_2) \\ & = & A(\square_1) + A(\square_2) \\ & = & A(\blacksquare) + A(\blacksquare) \\ & = & 2A(\blacksquare), \end{array}$$

- Que, si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $A(R_2) = A(R_1)$,
- Que, si R_1 y R_2 son regiones con $A(R_1 \cap R_2) = 0$, entonces $A(R_1 \cup R_2) = A(R_1) + A(R_2)$.



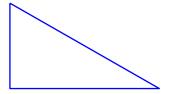
$$A(\square) = A(\square_1 \cup \square_2)$$

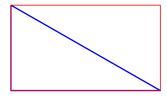
$$= A(\square_1) + A(\square_2)$$

$$= A(\blacksquare) + A(\blacksquare)$$

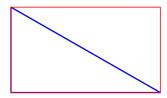
$$= 2A(\blacksquare),$$

Por lo tanto,
$$A(\blacksquare) = \frac{1}{2}A(\square)$$
.



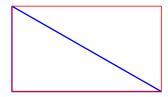


$$bh = A(\square) = 2A(\triangle)$$



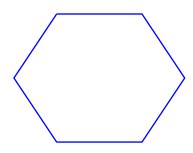
$$bh = A(\square) = 2A(\triangle)$$

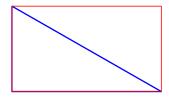
Incluso más complicado:



$$bh = A(\square) = 2A(\triangle)$$

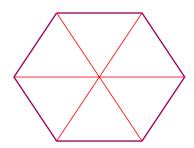
Incluso más complicado:

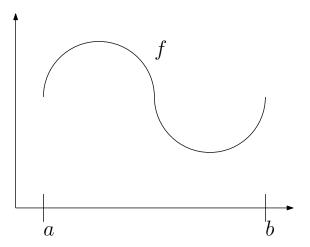




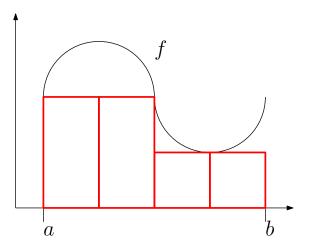
$$bh = A(\square) = 2A(\triangle)$$

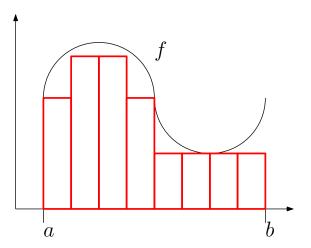
Incluso más complicado:

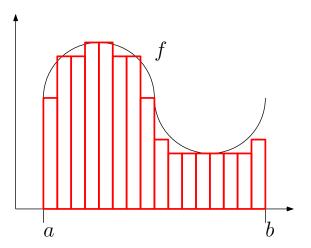


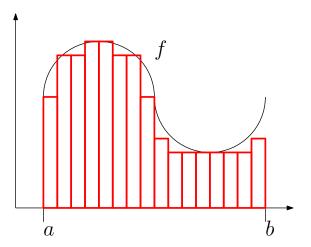


UNFV - FCE, 19/10/2021

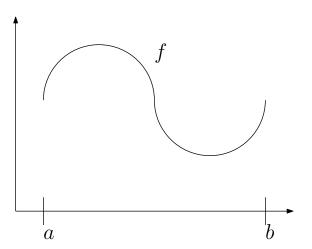


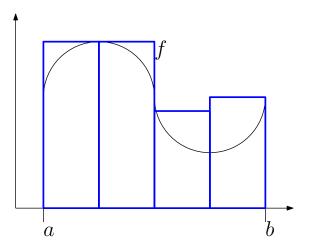


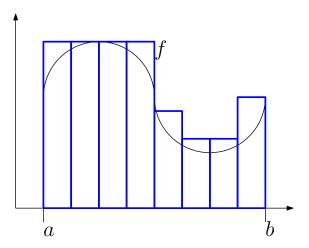


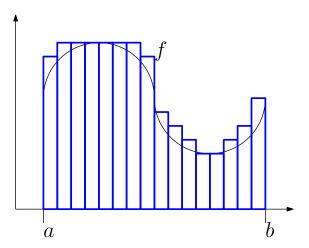


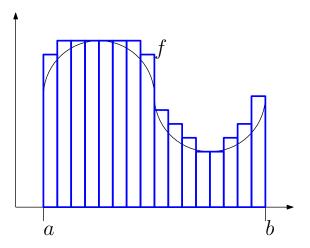
$$\int_{a}^{b} f = \sup \left\{ A(\varphi) \middle| \varphi \text{ es constante a pedazos y } \varphi \leq f \right\}$$











$$\overline{\int_a^b} f = \inf \left\{ A(\psi) \middle| \psi \text{ es constante a pedazos y } f \leq \psi \right\}$$

UNFV - FCE, 19/10/2021

Decimos que f es **integrable según Riemann** si $\int_a^b f = \int_a^{\overline{b}} f$;

Para calcular estas áreas, contamos con el **Teorema Fundamental del Cálculo**:

Para calcular estas áreas, contamos con el **Teorema Fundamental del Cálculo**:

$$\int_{a}^{b} f = F(b) - F(a),$$

Para calcular estas áreas, contamos con el **Teorema Fundamental del Cálculo**:

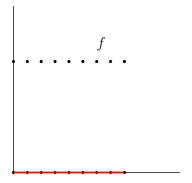
$$\int_{a}^{b} f = F(b) - F(a),$$

en donde F es tal que F' = f (F es una antiderivada de f).

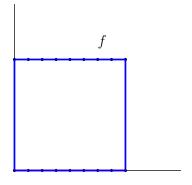
Un momento...

$$\text{La función de Dirichlet } f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases} \quad \text{(en } [0,1]\text{)}.$$

$$\text{La función de Dirichlet } f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases} \quad \text{(en } [0,1]\text{)}.$$

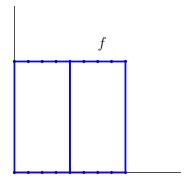


$$\text{La función de Dirichlet } f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases} \quad \text{(en } [0,1]\text{)}.$$



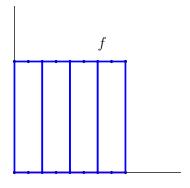
11/30

$$\text{La función de Dirichlet } f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases} \quad \text{(en } [0,1]\text{)}.$$

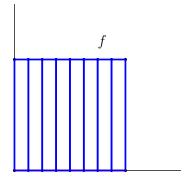


11/30

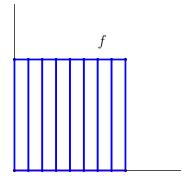
$$\text{La función de Dirichlet } f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases} \quad \text{(en } [0,1]\text{)}.$$



$$\text{La función de Dirichlet } f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases} \quad \text{(en } [0,1]\text{)}.$$

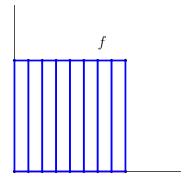


$$\text{La función de Dirichlet } f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases} \quad \text{(en } [0,1]\text{)}.$$



Siempre que $\varphi \leq f$, φ constante por pedazos, $A(\varphi) = 0$;

La función de Dirichlet
$$f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases}$$
 (en $[0,1]$).



Siempre que $\varphi \leq f$, φ constante por pedazos, $A(\varphi) = 0$;

Siempre que $f \le \psi$, ψ constante por pedazos, $A(\psi) = 1...$

Entonces,
$$\int_{a}^{b} f = 0$$

12/30

Entonces,
$$\int_{\underline{a}}^{\underline{b}} f = 0$$

$$y \overline{\int_a^b} f = 1$$

Entonces,
$$\int_{\underline{a}}^{\underline{b}} f = 0$$

$$y \int_{a}^{b} f = 1$$

¿Cuál es el área bajo la curva de esa función?

Entonces,
$$\int_{a}^{b} f = 0$$

$$y \int_{a}^{b} f = 1$$

¿Cuál es el área bajo la curva de esa función?

La idea genial de Lebesgue:

La idea genial de Lebesgue:

Cubrir no con una cantidad finita, sino con una cantidad *infinita* de rectángulos...

La idea genial de Lebesgue:

Cubrir no con una cantidad finita, sino con una cantidad *infinita* de rectángulos...

$$\lambda^*(R) = \inf \left\{ \left. \sum_{n=1}^\infty A(R_n) \right| R_n \text{ rectángulos, } R \subseteq \bigcup_{n=1}^\infty R_n \right\}$$

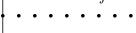
14/30

Recuerde que el conjunto de números racionales $\mathbb Q$ es *numerable*,

Recuerde que el conjunto de números racionales \mathbb{Q} es *numerable*, $\mathbb{Q} = \{q_1, q_2, \dots, q_n, \dots\}$;

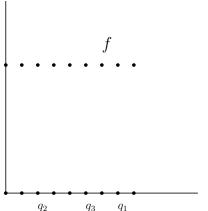
Recuerde que el conjunto de números racionales $\mathbb Q$ es *numerable*,

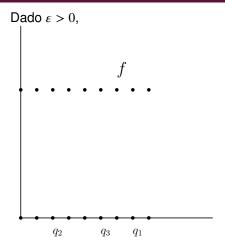
$$\mathbb{Q} = \{q_1, q_2, \dots, q_n, \dots\};$$



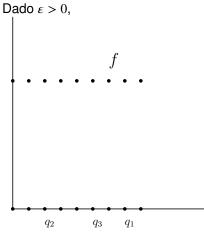
Recuerde que el conjunto de números racionales Q es numerable,

$$\mathbb{Q} = \{q_1, q_2, \dots, q_n, \dots\};$$

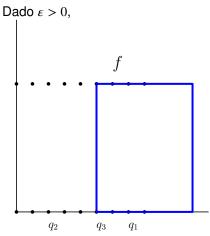




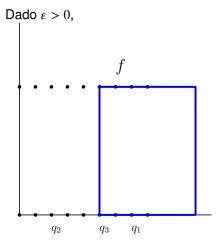
Del cálculo al infinito



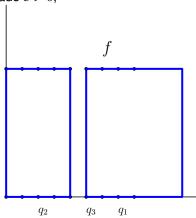
cubrir q_1 con un rectángulo R_1 de base $\frac{\varepsilon}{2}$,



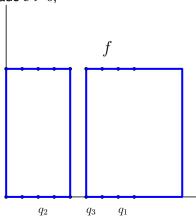
cubrir q_1 con un rectángulo R_1 de base $\frac{\varepsilon}{2}$,



 $\text{cubrir } q_1 \text{ con un rectángulo } R_1 \text{ de base } \frac{\varepsilon}{2}, \\ \text{cubrir } q_2 \text{ con un rectángulo } R_2 \text{ de base } \frac{\varepsilon}{4}, \\$

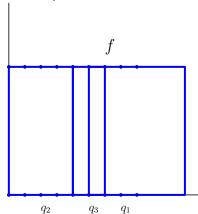


 $\text{cubrir } q_1 \text{ con un rectángulo } R_1 \text{ de base } \frac{\varepsilon}{2}, \\ \text{cubrir } q_2 \text{ con un rectángulo } R_2 \text{ de base } \frac{\varepsilon}{4}, \\$

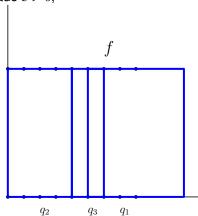


cubrir q_1 con un rectángulo R_1 de base $\frac{\varepsilon}{2}$, cubrir q_2 con un rectángulo R_2 de base $\frac{\varepsilon}{4}$, cubrir q_3 con un rectángulo R_3 de base $\frac{\varepsilon}{8}$,

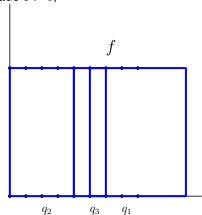
Del cálculo al infinito



cubrir q_1 con un rectángulo R_1 de base $\frac{\varepsilon}{2}$, cubrir q_2 con un rectángulo R_2 de base $\frac{\varepsilon}{4}$, cubrir q_3 con un rectángulo R_3 de base $\frac{\varepsilon}{8}$,



cubrir q_1 con un rectángulo R_1 de base $\frac{\varepsilon}{2}$, cubrir q_2 con un rectángulo R_2 de base $\frac{\varepsilon}{4}$, cubrir q_3 con un rectángulo R_3 de base $\frac{\varepsilon}{8}$, y así sucesivamente...



cubrir q_1 con un rectángulo R_1 de base $\frac{\varepsilon}{2}$, cubrir q_2 con un rectángulo R_2 de base $\frac{\varepsilon}{4}$, cubrir q_3 con un rectángulo R_3 de base $\frac{\varepsilon}{\varrho}$, y así sucesivamente...

$$A(f) \le \sum_{n=1}^{\infty} A(R_n) = \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$$

16/30

$$A(f) \leq \varepsilon$$

$$A(f) \leq \varepsilon$$

para todo $\varepsilon>0...$

16/30

$$A(f) \leq \varepsilon$$

para todo $\varepsilon>0...$

Por lo tanto, $A(f) = \lambda^*(R) = 0$.

$$A(f) \le \varepsilon$$

para todo $\varepsilon > 0...$

Por lo tanto, $A(f) = \lambda^*(R) = 0$.

En los conjuntos bien comportados

En los conjuntos bien comportados (llamados medibles),

UNFV - FCE, 19/10/2021

En los conjuntos bien comportados (llamados medibles), la medida de Lebesgue λ cumple:

UNFV - FCE, 19/10/2021

En los conjuntos bien comportados (llamados medibles), la medida de Lebesgue λ cumple:

 Si R₂ es el resultado de aplicarle un movimiento rígido a R₁, entonces $\lambda(R_2) = \lambda(R_1),$

En los conjuntos *bien comportados* (llamados *medibles*), la medida de Lebesgue λ cumple:

- Si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $\lambda(R_2) = \lambda(R_1)$,
- Si $R_1, R_2, \dots, R_n, \dots$ son regiones sin puntos en común, entonces

$$\lambda\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \lambda(R_n).$$

En los conjuntos *bien comportados* (llamados *medibles*), la medida de Lebesgue λ cumple:

- Si R_2 es el resultado de aplicarle un movimiento rígido a R_1 , entonces $\lambda(R_2) = \lambda(R_1)$,
- Si $R_1, R_2, \ldots, R_n, \ldots$ son regiones sin puntos en común, entonces $\lambda\left(\bigcup_{n=1}^{\infty}R_n\right)=\sum_{n=1}^{\infty}\lambda(R_n).$

Teorema (Vitali)

Existen regiones R que no son bien comportadas.

UNEV - FCE, 19/10/2021

Paradoja de Banach-Tarski:

Paradoja de Banach-Tarski: Es posible partir una esfera unitaria S² en cinco piezas R_1, R_2, R_3, R_4, R_5

Paradoja de Banach–Tarski: Es posible partir una esfera unitaria \mathbb{S}^2 en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos

18/30

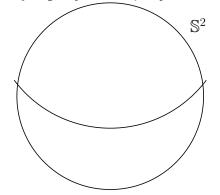
Paradoja de Banach–Tarski: Es posible partir una esfera unitaria \mathbb{S}^2 en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1, T_2, T_3, T_4, T_5 , tenemos que

Paradoja de Banach–Tarski: Es posible partir una esfera unitaria \mathbb{S}^2 en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1, T_2, T_3, T_4, T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2$

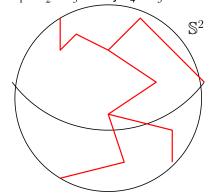
18/30

Paradoja de Banach–Tarski: Es posible partir una esfera unitaria \mathbb{S}^2 en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1, T_2, T_3, T_4, T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2$ y $T_4 \cup T_5 = \mathbb{S}^2$.

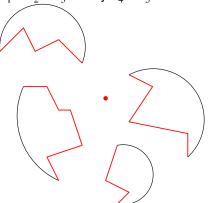
Paradoja de Banach–Tarski: Es posible partir una esfera unitaria S² en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1, T_2, T_3, T_4, T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2 \text{ y } T_4 \cup T_5 = \mathbb{S}^2.$



Paradoja de Banach–Tarski: Es posible partir una esfera unitaria S² en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1, T_2, T_3, T_4, T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2 \text{ y } T_4 \cup T_5 = \mathbb{S}^2.$



Paradoja de Banach–Tarski: Es posible partir una esfera unitaria \mathbb{S}^2 en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1, T_2, T_3, T_4, T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2$ y $T_4 \cup T_5 = \mathbb{S}^2$.

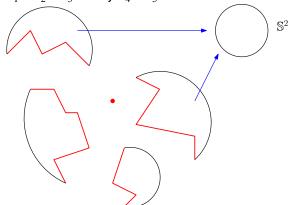


Paradoja de Banach–Tarski: Es posible partir una esfera unitaria \mathbb{S}^2 en cinco piezas R_1 , R_2 , R_3 , R_4 , R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1 , T_2 , T_3 , T_4 , T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2$ y $T_4 \cup T_5 = \mathbb{S}^2$.

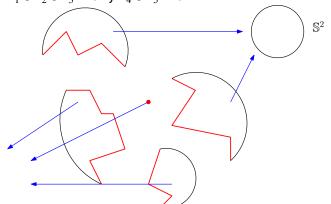


UNEV - FCE, 19/10/2021

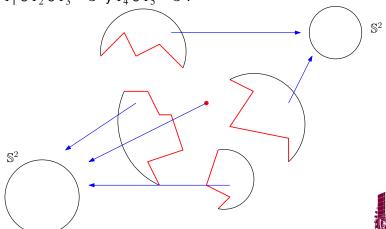
Paradoja de Banach–Tarski: Es posible partir una esfera unitaria S² en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1, T_2, T_3, T_4, T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2 \ \text{y} \ T_4 \cup T_5 = \mathbb{S}^2.$



Paradoja de Banach–Tarski: Es posible partir una esfera unitaria \mathbb{S}^2 en cinco piezas R_1, R_2, R_3, R_4, R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1, T_2, T_3, T_4, T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2$ y $T_4 \cup T_5 = \mathbb{S}^2$.



Paradoja de Banach–Tarski: Es posible partir una esfera unitaria \mathbb{S}^2 en cinco piezas R_1 , R_2 , R_3 , R_4 , R_5 de tal forma que, después de transformarlas mediante movimientos rígidos en T_1 , T_2 , T_3 , T_4 , T_5 , tenemos que $T_1 \cup T_2 \cup T_3 = \mathbb{S}^2$ y $T_4 \cup T_5 = \mathbb{S}^2$.



Instituto

¿¿¿¡¡¡Khá!!!???

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

¿Existe una función $\mu: \wp(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

 \bullet μ coincide con λ en los conjuntos medibles,

¿Existe una función $\mu: \wp(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- ② si R_2 es una traslación de R_1 , entonces $\mu(R_2) = \mu(R_1)$,

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- ② si R_2 es una traslación de R_1 , entonces $\mu(R_2) = \mu(R_1)$,
- \bullet si $R_1, R_2, \dots, R_n, \dots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n)$$

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- ② si R_2 es una traslación de R_1 , entonces $\mu(R_2) = \mu(R_1)$,
- \bullet si $R_1, R_2, \dots, R_n, \dots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n)$$

?

UNFV - FCE, 19/10/2021

¿Existe una función $\mu: \wp(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- ② si R_2 es una traslación de R_1 , entonces $\mu(R_2) = \mu(R_1)$,
- \bullet si $R_1, R_2, \dots, R_n, \dots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n)$$

?

Respuesta:

¿Existe una función $\mu: \wp(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- ② si R_2 es una traslación de R_1 , entonces $\mu(R_2) = \mu(R_1)$,
- lacktriangledown si $R_1, R_2, \dots, R_n, \dots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty}R_{n}\right)=\sum_{n=1}^{\infty}\mu(R_{n})$$

?

Respuesta: No, por el teorema de Vitali.

Una pregunta de Banach:

Una pregunta de Banach:

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0,\infty]$ tal que

Una pregunta de Banach:

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

 \bullet μ coincide con λ en los conjuntos medibles,

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- si $R_1, R_2, \ldots, R_n, \ldots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n)$$

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- si $R_1, R_2, \ldots, R_n, \ldots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n)$$

?

¿Existe una función $\mu: \wp(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- si $R_1, R_2, \ldots, R_n, \ldots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n)$$

Respuesta:

¿Existe una función $\mu: \mathscr{O}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- ② si $R_1, R_2, \dots, R_n, \dots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty}R_{n}\right)=\sum_{n=1}^{\infty}\mu(R_{n})$$

?

Respuesta: Resulta estar estrechamente relacionada con el infinito...

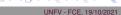
¡Hay varios tamaños de infinito!

¡Hay varios tamaños de infinito!

 \aleph_0 es el tamaño del conjunto \mathbb{N} ,

¡Hay varios tamaños de infinito!

 \aleph_0 es el tamaño del conjunto \mathbb{N} , los conjuntos de tamaño \aleph_0 se pueden listar



¡Hay varios tamaños de infinito!

¡Hay varios tamaños de infinito!

 \aleph_0 es el tamaño del conjunto \mathbb{N} , los conjuntos de tamaño \aleph_0 se pueden listar $\{x_1, x_2, \dots, x_n, \dots\}$

El conjunto de números pares:

¡Hay varios tamaños de infinito!

 \aleph_0 es el tamaño del conjunto \mathbb{N} , los conjuntos de tamaño \aleph_0 se pueden listar $\{x_1, x_2, \dots, x_n, \dots\}$

 \bullet El conjunto de números pares: $\{2,4,6,8,10,\ldots\}$.

¡Hay varios tamaños de infinito!

- El conjunto de números pares: {2, 4, 6, 8, 10, ...}.
- 2 El conjunto de números primos:

¡Hay varios tamaños de infinito!

- El conjunto de números pares: {2,4,6,8,10,...}.
- El conjunto de números primos: {2,3,5,7,11,13,17,...}.

¡Hay varios tamaños de infinito!

- El conjunto de números pares: {2,4,6,8,10,...}.
- El conjunto de números primos: {2,3,5,7,11,13,17,...}.
- El conjunto de números enteros Z:

¡Hay varios tamaños de infinito!

- El conjunto de números pares: {2,4,6,8,10,...}.
- El conjunto de números primos: {2,3,5,7,11,13,17,...}.
- **Solution** El conjunto de números enteros \mathbb{Z} : $\{0, 1, -1, 2, -2, 3, -3, ...\}$.

¡Hay varios tamaños de infinito!

- El conjunto de números pares: {2,4,6,8,10,...}.
- El conjunto de números primos: {2,3,5,7,11,13,17,...}.
- **3** El conjunto de números enteros \mathbb{Z} : $\{0, 1, -1, 2, -2, 3, -3, ...\}$.
- El conjunto de números racionales Q:

¡Hay varios tamaños de infinito!

- El conjunto de números pares: {2, 4, 6, 8, 10, ...}.
- El conjunto de números primos: {2,3,5,7,11,13,17,...}.
- **1** El conjunto de números enteros \mathbb{Z} : $\{0, 1, -1, 2, -2, 3, -3, ...\}$.
- El conjunto de números racionales \mathbb{Q} : $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \dots\right\}$

¡Hay varios tamaños de infinito!

 \aleph_0 es el tamaño del conjunto \mathbb{N} , los conjuntos de tamaño \aleph_0 se pueden listar $\{x_1, x_2, \ldots, x_n, \ldots\}$

- El conjunto de números pares: {2,4,6,8,10,...}.
- El conjunto de números primos: {2,3,5,7,11,13,17,...}.
- **Solution** El conjunto de números enteros \mathbb{Z} : $\{0, 1, -1, 2, -2, 3, -3, ...\}$.
- El conjunto de números racionales \mathbb{Q} : $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \dots\right\}$

Pareciera que todo mundo tiene tamaño \aleph_0 ...

El conjunto de números reales,

El conjunto de números reales, \mathbb{R} ,

El conjunto de números reales, \mathbb{R} , no es numerable.

El conjunto de números reales, \mathbb{R} , no es numerable. (De hecho, [0,1] no es numerable)

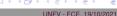
El conjunto de números reales, \mathbb{R} , no es numerable. (De hecho, [0,1] no es numerable)

 $\aleph_0 < |\mathbb{R}|$

El conjunto de números reales, \mathbb{R} , no es numerable. (De hecho, [0,1] no es numerable)

 $\aleph_0 < |\mathbb{R}|$

A los conjuntos con la misma cantidad de elementos que \mathbb{R} , se les dice que tienen tamaño $\mathfrak{c}.$



El conjunto de números reales, \mathbb{R} , no es numerable. (De hecho, [0,1] no es numerable)

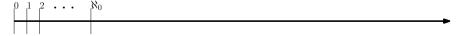
 $\aleph_0 < |\mathbb{R}|$

A los conjuntos con la misma cantidad de elementos que \mathbb{R} , se les dice que tienen tamaño $\mathfrak{c}.$

Los tamaños del infinito

24/30

Del cálculo al infinito



Del cálculo al infinito

24/30

0	1	2	[№] 0	N ₁

0	1	2	•	№ 0	\aleph_1	\aleph_2
						_

0	1	2 • • •	№ 0	\aleph_1	$leph_2$ · · ·

ĺ	0	1	2 •••	№ 0	\aleph_1	\aleph_2 · · ·	\aleph_{ω}

UNFV - FCE, 19/10/2021

ĺ	0	1	2	\aleph_0	\aleph_1	\aleph_2 · · ·	\aleph_{ω}	$\aleph_{\omega+1}$

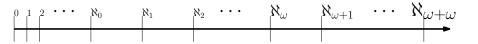
0	1	2	\aleph_0	\aleph_1	\aleph_2 · · ·	\aleph_{ω}	$leph_{\omega+1}$ · · ·

24/30

Los tamaños del infinito (cardinales):

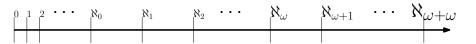
()	1	2	\aleph_0	\aleph_1	\aleph_2 · · ·	\aleph_{ω}	$\aleph_{\omega+1}$ · · ·	$\aleph_{\omega+\omega}$
ſ									

Los tamaños del infinito (cardinales):



Al infinito... ¡y más allá!

Los tamaños del infinito (cardinales):

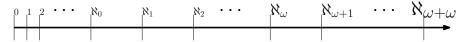


Al infinito... ¡y más allá!

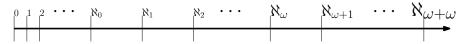
Pregunta (Cantor):

0	1	2	\aleph_0	\aleph_1	\aleph_2 · · ·	\aleph_{ω}	$\aleph_{\omega+1}$	• • •	$\aleph_{\omega+\omega}$

25/30



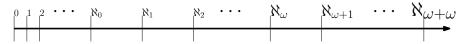
La conjetura era que $c = \aleph_1$ (la *Hipótesis del Continuo*)



La conjetura era que $c = \aleph_1$ (la *Hipótesis del Continuo*)

Teorema (Gödel 1939, Cohen 1960)

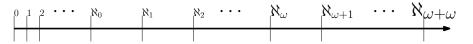
En realidad, no podemos determinar el valor exacto de c.



La conjetura era que $c = \aleph_1$ (la *Hipótesis del Continuo*)

Teorema (Gödel 1939, Cohen 1960)

En realidad, no podemos determinar el valor exacto de $\mathfrak c.$ $\mathfrak c$ puede ser igual a básicamente cualquier \aleph_α



La conjetura era que $c = \aleph_1$ (la *Hipótesis del Continuo*)

Teorema (Gödel 1939, Cohen 1960)

En realidad, no podemos determinar el valor exacto de \mathfrak{c} . \mathfrak{c} puede ser igual a básicamente cualquier \aleph_{α} (salvo algunas excepciones bien conocidas, por ejemplo $\alpha = \omega$).

Hilbert:

Gödel y Cohen:

¡Dijiste que habías resuelto el problema del continuo!

Sí:

Hilbert:

Gödel y Cohen:

¡Dijiste que habías resuelto el problema del continuo!

Sí: es indecidible

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0,\infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- si $R_1, R_2, \ldots, R_n, \ldots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n)?$$

¿Existe una función $\mu: \mathscr{D}(\mathbb{R}) \longrightarrow [0, \infty]$ tal que

- \bullet μ coincide con λ en los conjuntos medibles,
- si $R_1, R_2, \ldots, R_n, \ldots$ son regiones sin puntos en común, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n)?$$

Teorema (Ulam)

En caso de que hubiera tal μ , entonces \mathfrak{c} debería ser realmente grande...

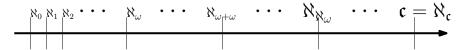
UNEV - FCE, 19/10/2021

28/30

$$\lambda_0 \lambda_1 \lambda_2 \cdots \lambda_{\omega} \cdots \lambda_{\omega+\omega} \cdots \lambda_{\omega+\omega} \cdots c = \lambda_0$$

$$\lambda_0 \lambda_1 \lambda_2 \cdots \lambda_{\omega} \cdots \lambda_{\omega+\omega} \cdots \lambda_{\omega} \cdots c = \lambda_{\omega}$$

$$\mathfrak{c}=\aleph_{\mathfrak{c}},$$

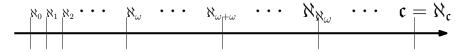


 $c = \aleph_c$, de modo que el continuo es enorme.

 $c = \aleph_c$, de modo que el continuo es enorme.

De hecho, el continuo es débilmente inaccesible.

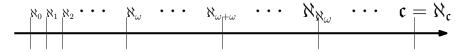
28/30



 $c = \aleph_c$, de modo que el continuo es enorme.

De hecho, el continuo es débilmente inaccesible.

Recíprocamente: este mundo es posible



 $c = \aleph_c$, de modo que el continuo es enorme.

De hecho, el continuo es débilmente inaccesible.

Recíprocamente: este mundo es posible siempre y cuando exista un *cardinal medible*.

Hilbert:

Hilbert:

(Yo había ponido mi continuo aquí...)

30/30

¡¡¡Muchísimas gracias!!!

¡¡¡Muchísimas gracias!!!

dfernandezb@ipn.mx

https://dfernandezb.web.app/espanol.html

30/30

D. Fernández (ESFM-IPN)

Del cálculo al infinito

UNFV - FCE, 19/10/2021