Strong Failures of Higher Analogs of Hindman's Theorem

David Fernández-Bretón (joint work with Assaf Rinot)

djfernan@umich.edu http://www-personal.umich.edu/~djfernan

> Department of Mathematics, University of Michigan

Workshop in Set Theory and its Applications in Topology Oaxaca, September 14, 2016

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

CMO-BIRS 14/09/2016 1 / 8

 ${\it G}$ will always be a commutative cancellative semigroup, additively denoted, of any cardinality.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

CMO-BIRS 14/09/2016 2 / 8

G will always be a commutative cancellative semigroup, additively denoted, of any cardinality.

If $X \subseteq G$, we will define the set of finite sums of X to be

 $FS(X) = \{x_1 + \dots + x_n | n \in \mathbb{N} \text{ and } x_1, \dots, x_n \in X \text{ are distinct} \}.$

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

 ${\it G}$ will always be a commutative cancellative semigroup, additively denoted, of any cardinality.

If $X \subseteq G$, we will define the set of finite sums of X to be

 $FS(X) = \{x_1 + \dots + x_n | n \in \mathbb{N} \text{ and } x_1, \dots, x_n \in X \text{ are distinct} \}.$

Theorem (Galvin/Glazer/Hindman)

For every commutative cancellative semigroup G and every colouring $c: G \longrightarrow 2$ with two colours, there exists an infinite $X \subseteq G$ such that FS(X) is monochromatic.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

CMO-BIRS 14/09/2016 2 / 8

 ${\it G}$ will always be a commutative cancellative semigroup, additively denoted, of any cardinality.

If $X \subseteq G$, we will define the set of finite sums of X to be

 $FS(X) = \{x_1 + \dots + x_n | n \in \mathbb{N} \text{ and } x_1, \dots, x_n \in X \text{ are distinct} \}.$

Theorem (Galvin/Glazer/Hindman)

For every commutative cancellative semigroup G and every colouring $c: G \longrightarrow 2$ with two colours, there exists an infinite $X \subseteq G$ such that FS(X) is monochromatic.

In all known proofs of this result, the set X is constructed by means of a recursion with ω steps.

Question

Is it possible to find, given a colouring $c : G \longrightarrow 2$ of an uncountable commutative cancellative semigroup, an uncountable X with FS(X) monochromatic?

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

CMO-BIRS 14/09/2016 3 / 8

Image: Image:

Question

Is it possible to find, given a colouring $c: G \longrightarrow 2$ of an uncountable commutative cancellative semigroup, an uncountable X with FS(X) monochromatic?

Theorem

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

• □ ▶ • □ ▶ • □ ▶

Our key algebraic tool to treat these problems is the following result:

Theorem

Let *G* be any commutative cancellative semigroup of cardinality $\kappa > \omega$. Then there are countable abelian groups G_{α} , $\alpha < \kappa$, such that *G* embeds into

$$\bigoplus_{\alpha < \kappa} G_{\alpha} = \left\{ x \in \prod_{\alpha < \kappa} G_{\alpha} \middle| x(\alpha) = 0 \text{ for all but finitely many } \alpha < \kappa \right\}.$$

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

Our key algebraic tool to treat these problems is the following result:

Theorem

Let *G* be any commutative cancellative semigroup of cardinality $\kappa > \omega$. Then there are countable abelian groups G_{α} , $\alpha < \kappa$, such that *G* embeds into

$$\bigoplus_{\alpha < \kappa} G_{\alpha} = \left\{ x \in \prod_{\alpha < \kappa} G_{\alpha} \middle| x(\alpha) = 0 \text{ for all but finitely many } \alpha < \kappa \right\}$$

Note that, if $c: \bigoplus_{\alpha < \kappa} G_{\alpha} \longrightarrow 2$ is a "bad" colouring, then so is $c \upharpoonright G$. Thus from now on we will assume without loss of generality that $G = \bigoplus_{\alpha < \kappa} G_{\alpha}$, where each G_{α} is countable.

Our key algebraic tool to treat these problems is the following result:

Theorem

Let *G* be any commutative cancellative semigroup of cardinality $\kappa > \omega$. Then there are countable abelian groups G_{α} , $\alpha < \kappa$, such that *G* embeds into

$$\bigoplus_{\alpha < \kappa} G_{\alpha} = \left\{ x \in \prod_{\alpha < \kappa} G_{\alpha} \middle| x(\alpha) = 0 \text{ for all but finitely many } \alpha < \kappa \right\}$$

Note that, if $c: \bigoplus_{\alpha < \kappa} G_{\alpha} \longrightarrow 2$ is a "bad" colouring, then so is $c \upharpoonright G$. Thus from now on we will assume without loss of generality that $G = \bigoplus_{\alpha < \kappa} G_{\alpha}$, where each G_{α} is countable.

Given $x \in \bigoplus_{\alpha < \kappa} G_{\alpha}$, we will define the **support** of *x* to be

$$\operatorname{supp}(x) = \{ \alpha < \kappa | x(\alpha) \neq 0 \} \in [\kappa]^{<\omega}.$$

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

• □ ▶ • □ ▶ • □ ▶ •

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow m$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow \omega$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow \omega$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

We denote the statement above by $G \not\rightarrow [\omega_1]^{FS}_{\omega}$ (recall the square-bracket notation for higher analogs of Ramsey's theorem).

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow \omega$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

We denote the statement above by $G \not\rightarrow [\omega_1]^{\text{FS}}_{\omega}$ (recall the square-bracket notation for higher analogs of Ramsey's theorem).

Theorem

If $\mathbf{V} = \mathbf{L}$, then for every uncountable commutative cancellative semigroup it is the case that $G \nleftrightarrow [\omega_1]_{\omega_1}^{FS}$.

For every uncountable commutative cancellative semigroup G there exists a colouring $c: G \longrightarrow \omega$ such that whenever $X \subseteq G$ is uncountable, FS(X) is not monochromatic.

We denote the statement above by $G \not\rightarrow [\omega_1]^{\text{FS}}_{\omega}$ (recall the square-bracket notation for higher analogs of Ramsey's theorem).

Theorem

If $\mathbf{V} = \mathbf{L}$, then for every uncountable commutative cancellative semigroup it is the case that $G \nleftrightarrow [\omega_1]_{\omega_1}^{FS}$.

Theorem

Modulo large cardinals it is consistent (e.g. in a model of Martin's Maximum) that $\mathbb{R} \to [\omega_1]_{\omega_1}^{FS}$.

イロト イヨト イヨト イヨト

Definition

Given cardinals $\kappa \geq \theta$, the symbol $S(\kappa, \theta)$ will denote the following statement: there exists a colouring $d : [\kappa]^{<\omega} \longrightarrow \theta$ such that, whenever $\mathcal{X} \subseteq [\kappa]^{<\omega}$ satisfies $|\mathcal{X}| = \kappa$, for every $\delta < \theta$ it is possible to find two distinct $x, y \in \mathcal{X}$ such that $d(z) = \delta$ whenever $x \bigtriangleup y \subseteq z \subseteq x \cup y$.

Definition

Given cardinals $\kappa \geq \theta$, the symbol $S(\kappa, \theta)$ will denote the following statement: there exists a colouring $d : [\kappa]^{<\omega} \longrightarrow \theta$ such that, whenever $\mathcal{X} \subseteq [\kappa]^{<\omega}$ satisfies $|\mathcal{X}| = \kappa$, for every $\delta < \theta$ it is possible to find two distinct $x, y \in \mathcal{X}$ such that $d(z) = \delta$ whenever $x \bigtriangleup y \subseteq z \subseteq x \cup y$.

Theorem

Let $\kappa = cf(\kappa) \ge \theta \ge \omega_1$. If $S(\kappa, \theta)$ holds, then for every commutative cancellative G with $|G| = \kappa$, $G \nrightarrow [\kappa]_{\theta}^{FS_2}$.

Here $FS_2(X) = \{x + y | x, y \in X \text{ are distinct}\}$ for every $X \subseteq G$.

イロト イヨト イヨト

Fact

If $cf(\kappa) = \kappa > \omega_1$ admits a nonreflecting stationary set, then $Pr_1(\kappa, \kappa, \kappa, \omega)$ holds (for example, if $\kappa = \lambda^+$ for $\lambda = cf(\lambda) \ge \omega_1$).

Fact

If $cf(\kappa) = \kappa > \omega_1$ admits a nonreflecting stationary set, then $Pr_1(\kappa, \kappa, \kappa, \omega)$ holds (for example, if $\kappa = \lambda^+$ for $\lambda = cf(\lambda) \ge \omega_1$).

Theorem

If $\kappa = cf(\kappa) \ge \omega_1$ and $\theta \le \kappa$, then $Pr_1(\kappa, \kappa, \theta, \omega)$ implies $S(\kappa, \theta)$. In particular, if $Pr_1(\kappa, \kappa, \theta, \omega)$ holds then $G \nrightarrow [\kappa]_{\theta}^{FS_2}$ whenever $|G| = \kappa$.

Fact

If $cf(\kappa) = \kappa > \omega_1$ admits a nonreflecting stationary set, then $Pr_1(\kappa, \kappa, \kappa, \omega)$ holds (for example, if $\kappa = \lambda^+$ for $\lambda = cf(\lambda) \ge \omega_1$).

Theorem

If $\kappa = cf(\kappa) \ge \omega_1$ and $\theta \le \kappa$, then $Pr_1(\kappa, \kappa, \theta, \omega)$ implies $S(\kappa, \theta)$. In particular, if $Pr_1(\kappa, \kappa, \theta, \omega)$ holds then $G \nrightarrow [\kappa]_{\theta}^{FS_2}$ whenever $|G| = \kappa$.

In fact, more is true.

Fact

If $cf(\kappa) = \kappa > \omega_1$ admits a nonreflecting stationary set, then $Pr_1(\kappa, \kappa, \kappa, \omega)$ holds (for example, if $\kappa = \lambda^+$ for $\lambda = cf(\lambda) \ge \omega_1$).

Theorem

If $\kappa = cf(\kappa) \ge \omega_1$ and $\theta \le \kappa$, then $Pr_1(\kappa, \kappa, \theta, \omega)$ implies $S(\kappa, \theta)$. In particular, if $Pr_1(\kappa, \kappa, \theta, \omega)$ holds then $G \nrightarrow [\kappa]_{\theta}^{FS_2}$ whenever $|G| = \kappa$.

In fact, more is true.

Theorem

 $S(\omega_1, \omega_1)$ holds. In particular, whenever $|G| = \omega_1$, it is the case that $G \nrightarrow [\omega_1]_{\omega_1}^{FS_2}$.

D. Fernández (joint with A. Rinot) (Michigan)

Failures of Hindman's Theorem

If $\kappa = \operatorname{cf}(\kappa) \ge \omega_1$ and $\theta \le \kappa$, then $\operatorname{Pr}_1(\kappa, \kappa, \theta, \omega)$ implies the existence of a $d : [\kappa]^{<\omega} \longrightarrow \theta$ such that, for all families $\mathcal{X}, \mathcal{Y} \subseteq [\kappa]^{<\omega}$ satisfying $|\mathcal{X}| = |\mathcal{Y}| = \kappa$ and every $\delta < \theta$, there are $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ such that $d(z) = \delta$ whenever $x \bigtriangleup y \subseteq z \subseteq x \cup y$.

If $\kappa = \operatorname{cf}(\kappa) \ge \omega_1$ and $\theta \le \kappa$, then $\operatorname{Pr}_1(\kappa, \kappa, \theta, \omega)$ implies the existence of a $d : [\kappa]^{<\omega} \longrightarrow \theta$ such that, for all families $\mathcal{X}, \mathcal{Y} \subseteq [\kappa]^{<\omega}$ satisfying $|\mathcal{X}| = |\mathcal{Y}| = \kappa$ and every $\delta < \theta$, there are $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ such that $d(z) = \delta$ whenever $x \bigtriangleup y \subseteq z \subseteq x \cup y$.

Theorem

If $\kappa = cf(\kappa) \ge \omega_1$ and $\theta \le \kappa$ satisfy the conclusion of the above theorem, then whenever $|G| = \kappa$ there is a colouring $c : G \longrightarrow \theta$ such that for every $n \in \mathbb{N}$ and every choice of $X_1, \ldots, X_n \subseteq G$ with $|X_1| = \cdots = |X_n| = \kappa$, the sumset

$$X_1 + \dots + X_n = \{x_1 + \dots + x_n | x_1 \in X_1, \dots, x_n \in X_n\}$$

meets all colours.

4 日 2 4 同 2 4 回 2 4 回 2 1 -

If $\kappa = \operatorname{cf}(\kappa) \ge \omega_1$ and $\theta \le \kappa$, then $\operatorname{Pr}_1(\kappa, \kappa, \theta, \omega)$ implies the existence of a $d : [\kappa]^{<\omega} \longrightarrow \theta$ such that, for all families $\mathcal{X}, \mathcal{Y} \subseteq [\kappa]^{<\omega}$ satisfying $|\mathcal{X}| = |\mathcal{Y}| = \kappa$ and every $\delta < \theta$, there are $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ such that $d(z) = \delta$ whenever $x \bigtriangleup y \subseteq z \subseteq x \cup y$.

Theorem

If $\kappa = cf(\kappa) \ge \omega_1$ and $\theta \le \kappa$ satisfy the conclusion of the above theorem, then whenever $|G| = \kappa$ there is a colouring $c : G \longrightarrow \theta$ such that for every $n \in \mathbb{N}$ and every choice of $X_1, \ldots, X_n \subseteq G$ with $|X_1| = \cdots = |X_n| = \kappa$, the sumset

$$X_1 + \dots + X_n = \{x_1 + \dots + x_n | x_1 \in X_1, \dots, x_n \in X_n\}$$

meets all colours.

Theorem

The conclusion of the theorem at the top also holds if $\kappa = \theta = \omega_1$. In particular, whenever $|G| = \omega_1$ there is a colouring $c : G \longrightarrow \omega_1$ such that every sumset $X_1 + \cdots + X_n$ in which $|X_1| = \cdots = |X_n| = \omega_1$ must meet all colours.

D. Fernández (joint with A. Rinot) (Michigan)