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Early History of the Problem Stone-Čech Compactification of a Discrete Semigroup

The Stone-Čech compactification of a discrete abelian semigroup S is the set
βS of ultrafilters on S, where every x ∈ S is identified with

{A ⊆ S
∣∣x ∈ A},

and basic open sets are those of the form

Ā = {p ∈ βS
∣∣A ∈ p}.

Then these sets are actually clopen, and Ā is really the closure in βS of the
set A.
The group operation + on S is also extended by the formula

p+ q = {A ⊆ S
∣∣{x ∈ S∣∣{y ∈ S∣∣x+ y ∈ A} ∈ q} ∈ p}

which turns βS into a right semitopological semigroup, meaning that for each
p ∈ βS the mapping (·) + p : βS −→ βS is continuous (note that the extended
operation + need not be commutative).
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Early History of the Problem Strongly and Weakly Summable Ultrafilters

If S is a semigroup, and ~x = 〈xn
∣∣n < ω〉 is a sequence of elements of S, then

we denote the set of finite sums of the sequence ~x by:

FS(~x) =

{∑
n∈a

xn

∣∣∣∣a ∈ [ω]<ω \ {∅}

}
.

Definition
Let S be a semigroup, and p ∈ βS.

We say that p is weakly summable if for every A ∈ p there exists a
sequence ~x such that FS(~x) ⊆ A.
We say that p is strongly summable if it is weakly summable, and
additionally, the above sequence ~x can be chosen in such a way that
FS(~x) ∈ p.

On abelian groups, strongly summable implies idempotent, which in turn
implies weakly summable. However, the existence of a strongly summable
ultrafilter on (ω,+) implies that of a P-point and hence cannot
be established in ZFC.
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Early History of the Problem Hindman’s Finite Sums Theorem (a.k.a. Graham-Rotschild’s Conjecture)

The importance of these concepts stems from the following

Theorem (Hindman)

Let ω =
⋃
i<n

Ai be a partition of ω into finitely many pieces. Then there exists a

sequence ~x of natural numbers and an element Ai of the partition such that
FS(~x) ⊆ Ai.

Proof.
Use the so-known Ellis-Nukamura Lemma to get an idempotent ultrafilter
p ∈ βω. Then p chooses one element Ai of the partition, and since p must be
weakly summable, the result follows.

This provides an elegant proof of Hindman’s finite sums theorem. It was
actually Neil Hindman who first constructed strongly summable ultrafilters on
ω, under CH, since at the time he was not aware of the Ellis-Nukamura
Lemma, but knew that an idempotent ultrafilter would give him
the desired result.
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Some Results that Came Afterwards Strongly Summable Ultrafilters are Badly Named

Strongly summable ultrafilters have some properties that not all idempotents
have.

Theorem (Hindman-Strauss)

Let p ∈ βω be a strongly summable ultrafilter, and let q, r ∈ ω∗ be such that
q + r = r + q = p. Then, q, r ∈ Z+ p.

Theorem (Hindman-Protasov-Strauss)

If G can be embedded in the circle group T = R/Z, and p ∈ βG is strongly
summable, then whenever q, r ∈ G∗ = βG \G are such that q + r = r + q = p,
it must be the case that q, r ∈ G+ p.
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Some Results that Came Afterwards Sparse Strongly Summable Ultrafilters

By strengthening a bit the definition of strongly summable, Hindman, Protasov
and Strauss were able to get a slightly stronger theorem.

Definition
An ultrafilter p ∈ βG is sparse if for every A ∈ p there exist two sequences
~x = 〈xn

∣∣n < ω〉, ~y = 〈yn
∣∣n < ω〉, where ~y is a subsequence of ~x such that

{xn
∣∣n < ω} \ {yn

∣∣n < ω} is infinite, FS(~x) ⊆ A, and FS(~y) ∈ p.

MA implies that there are sparse ultrafilters. And obviously every sparse
ultrafilter will be strongly summable. But sparse ultrafilters have a stronger
property.

Theorem (Hindman-Protasov-Strauss)

If G can be embedded in T and p ∈ G∗ is sparse, then whenever q, r ∈ G∗ are
such that q + r = p, it must be the case that q, r ∈ G+ p.
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The Most Recent Results Strongly Summable Ultrafilters that are Sparse

Theorem (Hindman-Steprāns-Strauss)

The semigroup (ω,+) has the property that every strongly summable
ultrafilter on it is sparse. So does every subsemigroup of T.

Theorem (Hindman-Steprāns-Strauss)

Let S be a countable subsemigroup of
⊕
n<ω

T and let p be a nonprincipal

strongly summable ultrafilter on S. If{
x ∈ S

∣∣πmin(x)(x) 6= 1

2

}
∈ p,

then p must be sparse (here min(x) denotes the minimum i such that πi(x) is
nonzero).
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The Most Recent Results The Boolean Group

Question (Hindman-Steprāns-Strauss)

Is it consistent with ZFC that there exists a nonsparse strongly summable
ultrafilter on

⊕
n<ω

Z2?

Theorem (F.B.)

Let p be a strongly summable ultrafilter on
⊕
n<ω

Z2. Then, p is sparse.

Theorem (F.B.)

If there is an abelian cancellative semigroup S and a nonsparse strongly
summable ultrafilter on S, then there is one on

⊕
n<ω

Z2n .
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Questions About Strongly Summable Ultrafilters

Question
Is every strongly summable ultrafilter on any abelian group (equivalently, on⊕
n<ω

T) sparse?

Question
Is there (under suitable assumptions, such as MA) a strongly summable
ultrafilter on

⊕
n<ω

Z2 that is not additively isomorphic to a union ultrafilter?

Question
Does the existence of a strongly summable ultrafilter on any abelian group
imply that of a P-point?
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Questions About P-points, etc.

Question
What happens when G is not abelian?

Question
Does the existence of a nondiscrete extremally disconnected group topology
on ([ω]<ω,4) implies that of a strongly summable ultrafilter? What about a
P-point? Is there a model with P-points but no strongly summable ultrafilters
(say, on the Boolean group)?
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Questions Points of Continuity of βω

In general, for a fixed q ∈ βω, the mapping q + (·) : βω −→ βω is not
continuous. However, every P-point is a point of continuity of such a map for
every q ∈ βω.

Question (Protasov)

Are there p, q ∈ ω∗ such that p is not a P-point, yet it is a point of continuity of
q + (·)?

Conjecture (Steprāns)

There is a model of ZFC in which there are no P-points, yet there is one (are
many?) p ∈ ω∗ that is a point of continuity of q + (·) for some (many?) q ∈ ω∗.
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