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Abstract. We provide two new proofs of the infinitude of prime numbers, using the additive Ramsey-

theoretic result known as Folkman’s theorem (alternatively, one can think of these proofs as using Hindman’s

theorem). This adds to the existing literature deriving the infinitude of primes from Ramsey-type theorems.

1. Introduction

A very recent and exciting vein of research is the search for new proofs in number theory utilizing

Ramsey-theoretic results. Specifically regarding Euclid’s proof that there are infinitely many primes, the first

two instances were Alpoge’s proof [1] using van der Waerden’s theorem [14], as well as Granville’s proof [9]

using the same fact together with Fermat’s theorem on sums of squares within arithmetic progressions. More

recently, Gasarch [6] provided yet another proof using Schur’s theorem [13] together with Fermat’s Last

Theorem (for definiteness, one could say that Gasarch’s proof uses the case n = 3 of Fermat’s last theorem).

The same proof was discovered independently by Elsholtz [4], who goes on to provide other proofs using

results such as Roth’s theorem (the case of length three of Szeméredi’s theorem), or even Hindman’s finite

sums theorem [10] together with an observation about the distances between consecutive n-th powers. Finally,

Göral, Özcan and Sertbaş [7] provided a beautiful proof utilizing an extension of the polynomial van der

Waerden’s theorem of Bergelson and Leibman [3].

In this short paper, we insert ourselves within this tradition by using yet another Ramsey-theoretic

result, Folkman’s theorem (baptized in this way by Graham, Rothschild and Spencer [8, §3.4]), to prove

that there are infinitely many primes. Folkman’s theorem (told via personal communication to Graham and

Rothschild, although it was actually first published by Sanders [12], and is also sometimes known as the

Folkman–Rado–Sanders’s theorem because it follows from Rado’s more general theorem [8, §3.3] on partition

regular equations) establishes that, for every colouring c of the set of natural numbers N with finitely many

colours, and for every M ∈ N, there exists a set of (positive) natural numbers X ⊆ N, with |X| = M , such

that all sums obtainable from finitely many elements of X (without repetitions) have the same colour, in
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other words, the set

FS(X) =

{
a1 + · · ·+ ak

∣∣∣∣1 ≤ k ≤ M and a1, . . . , ak ∈ X are distinct

}
is c-monochromatic. So, Folkman’s theorem is a generalization of Schur’s theorem (Schur’s being Folkman’s

particular case with M = 2); alternatively, one can think of it as the finite version of Hindman’s theorem (in

Hindman’s theorem, the corresponding set X is infinite). After using Schur’s and then Roth’s theorem to

prove the infinitude of prime numbers, Elsholtz [4, p. 254] conjectured that it should also be possible to use

Folkman’s theorem (combined with some other number-theoretic results similar in flavour to Fermat’s Last

Theorem); immediately after he proceeds to provide another proof using Hindman’s theorem (along with an

observation about the differences between consecutive n-th powers).

This paper provides two different proofs using Folkman’s theorem, so in a sense we confirm Elsholtz’s

conjecture; on the other hand, our proofs do not use any even moderately complicated number-theoretic

result, but only combinatorics (the most advanced tool we use is the pigeonhole principle for the second

of our proofs). One could say that our proofs sacrifice the simplicity of Schur’s theorem, requiring to use

the stronger Folkman’s theorem, in exchange for being able to avoid any deep number theory. Of course,

Folkman’s theorem itself can be proved without using the fact that there are infinitely many primes. For

example, one can use any of the original proofs (either Sanders’s [12] or the one in [8, §3.4]), or one can prove

Hindman’s theorem [10] first and then deduce Folkman’s using a compactness argument. Hindman’s theorem

itself can be proved either purely elementarily [2], or by means of ultrafilters [11, Corollary 5.10] (even without

compactness, it is possible to directly prove Folkman’s theorem with ultrafilters as in [5, Theorem 20]); yet

another alternative is to decide that rather than Folkman’s theorem, we will use Hindman’s theorem—even

with this interpretation, our proofs are different from Elsholtz’s from [4, Theorem 3]. It is worth mentioning

that, if one chooses to go the ultrafilter route, Hindman’s theorem’s proof (or Folkman’s theorem’s proof, for

that matter) is of significantly less complexity than that of van der Waerden’s theorem (cf. the proofs in

e.g. [11, §14.1] and [5, pp. 129-130]) and so, from that perspective, our proofs are simpler than Alpoge’s and

Granville’s (although definitely more complicated than Euclid’s classical proof).

2. The proofs

We begin by establishing our notation and terminology. The notation a mod m will stand for the unique

number between 0 and m− 1 that is congruent to a modulo m. Given two sequences s = (a1, . . . , ai), t =

(b1, . . . , bj), we denote the concatenation of s and t with the symbol s ⌢ t = (a1, . . . , ai, b1, . . . , bj). We will

always use the letter P to denote the set of all prime numbers. Now, given a prime number p ∈ P, recall that

(by the fundamental theorem of arithmetic) for every a there exist unique α and A such that a = pαA, with
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(p,A) = 1. We will use the notation νp(a) = α and say that α is the p-adic order of a; we will also denote

ξp(a) = A. Hence, if P is the set of all prime numbers, then we have

n =
∏
p∈P

pνp(a)

and

ξp(n) =
∏
q∈P
q ̸=p

qνq(a)

for all n ∈ N. An important (elementary) fact that we will use is that, for a, b such that νp(a) < νp(b), we

have νp(a+ b) = νp(a).

The first proof: Suppose that P is a finite set, say |P| = N , and let c be the colouring given by

c(n) = (ν2(n) mod 2, ξ2(n) mod 4) ⌢ (ξp(n) mod p
∣∣p ∈ P \ {2}).

By definition, ξ2(n) mod 4 is either 1 or 3, and ξp(n) mod p is between 1 and p− 1 for each p ∈ P \ {2},

so that c is a colouring with 4
∏

p∈P\{2}(p − 1) colours. By Folkman’s theorem, there exists a set X with

M = N + 1 nonzero elements such that FS(X) is c-monochromatic.

Claim 1. For any two distinct a, b ∈ X, we have ν2(a) ̸= ν2(b).

Proof of claim: Suppose, on the contrary, that a, b ∈ X are distinct and ν2(a) = ν2(b) = α. By monochro-

maticity of FS(X), the numbers ξ2(a) mod 4, ξ2(b) mod 4 are either both equal to 1, or both equal to 3; in

any case it must be the case that ξ2(a) + ξ2(b) ≡ 2 mod 4. Since a+ b = pα(ξp(a) + ξp(b)), this means that

ν2(a) = α and ν2(a+ b) = α+ 1; since FS(X) is monochromatic (and the colour contains, in its first entry,

the information about the parity of ν2), this is a contradiction. □

Claim 2. For each odd p ∈ P and for any two distinct a, b ∈ X, we have νp(a) ̸= νp(a).

Proof of claim: Seeking for a contradiction, assume that a, b ∈ X are distinct and νp(a) = νp(b) = α.

Since FS(X) is monochromatic, there is a C, 1 ≤ C ≤ p − 1, such that C ≡ ξp(a) ≡ ξp(b) mod p.

Then ξp(a) + ξp(b) ≡ 2C mod p. Since (2, p) = 1 and (C, p) = 1, we conclude (2C, p) = 1; in particular,

(p, ξp(a)+ξp(b)) = 1. However, since a+b = pα(ξp(a)+ξp(b)), the conclusion is that ξp(a+b) = ξp(a)+ξp(b) ≡

2C ̸≡ C mod p, contradicting the monochromaticity of the set FS(X). □

Therefore, distinct elements of X always have distinct values for each of the νp functions. We choose at

most N elements of X in the following way: let a1 be the element of X with least possible value for ν2(a1);

then, choose a2 ∈ X to be the one with least possible ν3(a2), unless this element is already a1, in which

case we do not choose a2 yet. This process continues along the elements of P: in general, once we are in the
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step corresponding to p ∈ P, and assuming that we have already defined a1, . . . , ak, and that for each q ∈ P

with q < p we have the element a ∈ X with least possible νq(a) listed among the ai, then we let ak+1 be the

element of X with least possible νp, unless it is already listed among the ai (in case it is already listed, we

simply skip this step and choose ak+1 in the step corresponding to the next element of P). In the end, once

we have obtained the full sequence a1, . . . , at ∈ X (for some t ≤ N), since |X| = N + 1 we may choose an

a ∈ X that is not listed among the ai. Then, by construction, we have νp(a1 + · · ·+ at) < νp(a) for each

p ∈ P. Therefore νp(a1 + · · ·+ at + a) = νp(a1 + · · ·+ at); since this happens for all prime numbers, we may

conclude that a1 + · · ·+ at + a = a1 + · · ·+ at, hence a = 0, a contradiction. □First proof

Our second proof uses slightly different ideas, being much more similar in spirit to e.g. Alpoge’s proof

that uses van der Waerden’s theorem [1]. Strictly speaking, the upcoming proof uses less colours, but it does

require invoking a much bigger monochromatic set.

The second proof: Suppose, once again, that the set P of prime numbers is finite, and let |P| = N . We define

a colouring of natural numbers c by setting

c(n) = (νp(n) mod 2
∣∣p ∈ P).

Observe that this is a colouring with 2N colours. Let

M = (N + 1)
∏
p∈P

p4

and apply Folkman’s theorem to obtain a set X of M many distinct (nonzero) numbers such that FS(X) is

c-monochromatic.

Claim 3. For each p ∈ P and for each α, there are no more than p4 elements a ∈ X such that νp(a) = α.

Proof of claim. Suppose, seeking a contradiction, that there are more than p4 such elements. Since ξp(a)

mod p2 is one of p2 − 2 possibilities (as it cannot equal 0 or p), for all a, by the pigeonhole principle one can

find p2 distinct elements a1, a2, . . . , ap2−1, along with some 0 < A < p2, such that ξp(ai) ≡ A mod p2 and

νp(ai) = α for all i ≤ p2 − 1. Since A cannot equal 0 or p, we conclude (A, p) = 1, so that there exists some t,

0 < t < p2, such that tA ≡ p mod p2. Letting b = a1 + · · ·+ at and B = ξp(a1) + · · ·+ ξp(at), we get

b = a1 + · · ·+ at = pα(ξp(a1) + · · ·+ ξp(at)) = pαB,

where

B = ξp(a1) + · · · ξp(at) ≡ A+ · · ·+A = tA ≡ p mod p2,
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meaning νp(B) = 1. Therefore νp(b) = α+ 1 while νp(a1) = α, contradicting the monochromaticity of FS(X)

(since c includes the information about the parity of νp). □

The attentive reader will note that the p4 in the above claim is overkill; by being slightly more careful in

the above proof, one can actually ensure that no more than (p2 − 2)2 elements of X have the same νp value.

Therefore, since X has M = (N + 1)
∏

p∈P p
4 elements, one can successively thin out the set X, by going

through each p ∈ P and removing, for each α, all but one of the elements a ∈ X with νp(a) = α. The

previous claim ensures that, by doing this, we are keeping at least 1
p4 of the elements of our set. Therefore, at

the end of the process, we are left with a subset Z ⊆ X, with |Z| ≥
(∏

p∈P
1
p4

)
|X| = N + 1, such that for

each p and any two distinct a, b ∈ Z, we must have νp(a) ̸= νp(b). We now work on the elements of Z, in

exactly the same way as in our first proof, in order to obtain a list a1, . . . , at (for some t ≤ N) of elements

of Z such that, for all p ∈ P, the element a ∈ Z with least possible value for νp(a) is already listed among

the ai. Just as in our first proof, since |Z| > N , we may choose an a ∈ X not listed among the ai, so that

νp(a1 + · · ·+ at + a) = νp(a1 + · · ·+ at) for all p ∈ P and, since the p ∈ P are all the prime numbers, we may

conclude that a1 + · · ·+ at + a = a1 + · · ·+ at so that a = 0, a contradiction.

□Second proof
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of Primes in Domains. The American Mathematical Monthly 130 (2023), 114–125.



6 D. FERNÁNDEZ

[8] Ronald L. Graham, Bruce L. Rothschild and Joel. H. Spencer, Ramsey Theory. Second Edition., Wiley,

1990.

[9] Andrew Granville, Squares in arithmetic progressions and infinitely many primes. The American

Mathematical Monthly 124 (2017), 951–954.

[10] Neil Hindman, Finite sums from sequences within cells of a partition of N . J. Combin. Theory Ser. A

17 (1974) 1–11.

[11] Neil Hindman and Dona Strauss, Algebra in the Stone-Čech compactification. Second revised and extended
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