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ABSTRACT. We provide two new proofs of the infinitude of prime numbers, using the additive Ramsey-
theoretic result known as Folkman’s theorem (alternatively, one can think of these proofs as using Hindman’s

theorem). This adds to the existing literature deriving the infinitude of primes from Ramsey-type theorems.

1. INTRODUCTION

A very recent and exciting vein of research is the search for new proofs in number theory utilizing
Ramsey-theoretic results. Specifically regarding Fuclid’s proof that there are infinitely many primes, the first
two instances were Alpoge’s proof [1] using van der Waerden’s theorem [14], as well as Granville’s proof [9]
using the same fact together with Fermat’s theorem on sums of squares within arithmetic progressions. More
recently, Gasarch [6] provided yet another proof using Schur’s theorem [13] together with Fermat’s Last
Theorem (for definiteness, one could say that Gasarch’s proof uses the case n = 3 of Fermat’s last theorem).
The same proof was discovered independently by Elsholtz [4], who goes on to provide other proofs using
results such as Roth’s theorem (the case of length three of Szeméredi’s theorem), or even Hindman’s finite
sums theorem [10] together with an observation about the distances between consecutive n-th powers. Finally,
Géral, Ozcan and Sertbag [7] provided a beautiful proof utilizing an extension of the polynomial van der
Waerden’s theorem of Bergelson and Leibman [3].

In this short paper, we insert ourselves within this tradition by using yet another Ramsey-theoretic
result, Folkman’s theorem (baptized in this way by Graham, Rothschild and Spencer [8, §3.4]), to prove
that there are infinitely many primes. Folkman’s theorem (told via personal communication to Graham and
Rothschild, although it was actually first published by Sanders [12], and is also sometimes known as the
Folkman—Rado—Sanders’s theorem because it follows from Rado’s more general theorem [8, §3.3] on partition
regular equations) establishes that, for every colouring ¢ of the set of natural numbers N with finitely many
colours, and for every M € N, there exists a set of (positive) natural numbers X C N, with | X| = M, such

that all sums obtainable from finitely many elements of X (without repetitions) have the same colour, in

2020 Mathematics Subject Classification. Primary 11A41, 05D10; Secondary 11B75.
Key words and phrases. Ramsey-type theorem, Folkman’s theorem, Hindman’s theorem, prime numbers, Euclid’s theorem.

1



2 D. FERNANDEZ

other words, the set

FS(X)—{CLl—F"'—Fak

1<k<Mandai,...,a; € X are distinct}

is c-monochromatic. So, Folkman’s theorem is a generalization of Schur’s theorem (Schur’s being Folkman’s
particular case with M = 2); alternatively, one can think of it as the finite version of Hindman’s theorem (in
Hindman’s theorem, the corresponding set X is infinite). After using Schur’s and then Roth’s theorem to
prove the infinitude of prime numbers, Elsholtz [4, p. 254] conjectured that it should also be possible to use
Folkman’s theorem (combined with some other number-theoretic results similar in flavour to Fermat’s Last
Theorem); immediately after he proceeds to provide another proof using Hindman’s theorem (along with an
observation about the differences between consecutive n-th powers).

This paper provides two different proofs using Folkman’s theorem, so in a sense we confirm Elsholtz’s
conjecture; on the other hand, our proofs do not use any even moderately complicated number-theoretic
result, but only combinatorics (the most advanced tool we use is the pigeonhole principle for the second
of our proofs). One could say that our proofs sacrifice the simplicity of Schur’s theorem, requiring to use
the stronger Folkman’s theorem, in exchange for being able to avoid any deep number theory. Of course,
Folkman’s theorem itself can be proved without using the fact that there are infinitely many primes. For
example, one can use any of the original proofs (either Sanders’s [12] or the one in [8, §3.4]), or one can prove
Hindman’s theorem [10] first and then deduce Folkman’s using a compactness argument. Hindman’s theorem
itself can be proved either purely elementarily [2], or by means of ultrafilters [11, Corollary 5.10] (even without
compactness, it is possible to directly prove Folkman’s theorem with ultrafilters as in [5, Theorem 20]); yet
another alternative is to decide that rather than Folkman’s theorem, we will use Hindman’s theorem—even
with this interpretation, our proofs are different from Elsholtz’s from [4, Theorem 3]. It is worth mentioning
that, if one chooses to go the ultrafilter route, Hindman’s theorem’s proof (or Folkman’s theorem’s proof, for
that matter) is of significantly less complexity than that of van der Waerden’s theorem (cf. the proofs in
e.g. [11, §14.1] and [5, pp. 129-130]) and so, from that perspective, our proofs are simpler than Alpoge’s and

Granville’s (although definitely more complicated than Euclid’s classical proof).

2. THE PROOFS

We begin by establishing our notation and terminology. The notation a mod m will stand for the unique
number between 0 and m — 1 that is congruent to a modulo m. Given two sequences s = (a1, ..., a;),t =
(b1,...,bj), we denote the concatenation of s and ¢t with the symbol s ~t = (a1,...,a;,b1,...,b;). We will
always use the letter P to denote the set of all prime numbers. Now, given a prime number p € P, recall that

(by the fundamental theorem of arithmetic) for every a there exist unique o and A such that a = p*A, with
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(p, A) = 1. We will use the notation v,(a) = « and say that « is the p-adic order of a; we will also denote

&p(a) = A. Hence, if P is the set of all prime numbers, then we have

n = Hp’jp(a)

peP

and

&(n) = [T

q€P

qa#p
for all n € N. An important (elementary) fact that we will use is that, for a,b such that v,(a) < v, (), we
have v,(a + b) = v,(a).

The first proof: Suppose that P is a finite set, say |P| = N, and let ¢ be the colouring given by
c(n) = (r2(n) mod 2,&(n) mod 4) ~ (&(n) mod p|p € P\ {2}).

By definition, £&2(n) mod 4 is either 1 or 3, and &,(n) mod p is between 1 and p — 1 for each p € P\ {2},
so that c is a colouring with 4HP€P\{2}(p — 1) colours. By Folkman’s theorem, there exists a set X with

M = N + 1 nonzero elements such that FS(X) is c-monochromatic.
Claim 1. For any two distinct a,b € X, we have va(a) # va(b).

Proof of claim: Suppose, on the contrary, that a,b € X are distinct and v»(a) = v2(b) = a. By monochro-
maticity of FS(X), the numbers &>(a) mod 4,&>(b) mod 4 are either both equal to 1, or both equal to 3; in
any case it must be the case that {2(a) + £2(b) =2 mod 4. Since a + b = p®(&,(a) + &,(b)), this means that
va(a) = a and va(a + b) = o + 1; since FS(X) is monochromatic (and the colour contains, in its first entry,

the information about the parity of v4), this is a contradiction. O
Claim 2. For each odd p € P and for any two distinct a,b € X, we have v,(a) # vp(a).

Proof of claim: Seeking for a contradiction, assume that a,b € X are distinct and v,(a) = vp(b) = «.
Since FS(X) is monochromatic, there is a C, 1 < C < p — 1, such that C = &,(a) = £,(b) mod p.
Then &,(a) + &,(b) = 2C mod p. Since (2,p) = 1 and (C,p) = 1, we conclude (2C,p) = 1; in particular,
(p, &p(a)+&, (b)) = 1. However, since a+b = p™(€,(a)+E,(b)), the conclusion is that §,(a+b) = &,(a)+&,(b) =

2C # C mod p, contradicting the monochromaticity of the set FS(X). |

Therefore, distinct elements of X always have distinct values for each of the v, functions. We choose at
most N elements of X in the following way: let a; be the element of X with least possible value for vo(a;);
then, choose as € X to be the one with least possible v3(as), unless this element is already a;, in which

case we do not choose ag yet. This process continues along the elements of P: in general, once we are in the
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step corresponding to p € P, and assuming that we have already defined aq, ..., ak, and that for each ¢ € P
with ¢ < p we have the element a € X with least possible v4(a) listed among the a;, then we let ax41 be the
element of X with least possible v, unless it is already listed among the a; (in case it is already listed, we
simply skip this step and choose ax1 in the step corresponding to the next element of P). In the end, once
we have obtained the full sequence aq,...,a; € X (for some ¢ < N), since |X| = N + 1 we may choose an
a € X that is not listed among the a;. Then, by construction, we have vp(a;1 + -+ + a;) < vp(a) for each
p € P. Therefore vp(a1 + -+ + ar + a) = vp(a1 + - - - + a;); since this happens for all prime numbers, we may
conclude that a; +---+a; +a =a; + - -- + a4, hence a = 0, a contradiction. Orirst proof
Our second proof uses slightly different ideas, being much more similar in spirit to e.g. Alpoge’s proof
that uses van der Waerden’s theorem [1]. Strictly speaking, the upcoming proof uses less colours, but it does
require invoking a much bigger monochromatic set.
The second proof: Suppose, once again, that the set P of prime numbers is finite, and let |P| = N. We define

a colouring of natural numbers ¢ by setting
¢(n) = (vp(n) mod 2|p € P).
Observe that this is a colouring with 2V colours. Let

M:(N+1)Hp4
peP

and apply Folkman’s theorem to obtain a set X of M many distinct (nonzero) numbers such that FS(X) is

c-monochromatic.

Claim 3. For each p € P and for each «, there are no more than p* elements a € X such that v,(a) = a.

Proof of claim. Suppose, seeking a contradiction, that there are more than p* such elements. Since &p(a)
mod p? is one of p? — 2 possibilities (as it cannot equal 0 or p), for all a, by the pigeonhole principle one can
find p? distinct elements ay,as, ..., ay2_1, along with some 0 < A < p?, such that &,(a;) = A mod p? and
vp(a;) = a for all i < p? — 1. Since A cannot equal 0 or p, we conclude (A, p) = 1, so that there exists some ¢,

0 <t < p? such that tA =p mod p?. Letting b=a; +---+a; and B =¢&,(ar) + -+ & (ar), we get
b=ar+ - +a =p*(&lar) + - +&plar) = p*B,

where

B=¢&(a)+ - &la)=A+--+A=tA=p mod p®
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meaning v,(B) = 1. Therefore v,(b) = a4+ 1 while v,(a1) = «, contradicting the monochromaticity of FS(X)

(since ¢ includes the information about the parity of vp). ]

The attentive reader will note that the p* in the above claim is overkill; by being slightly more careful in
the above proof, one can actually ensure that no more than (p? — 2)? elements of X have the same v, value.

Therefore, since X has M = (N + 1) Hpeﬂ" p* elements, one can successively thin out the set X, by going
through each p € P and removing, for each ¢, all but one of the elements a € X with v,(a) = o. The
previous claim ensures that, by doing this, we are keeping at least p% of the elements of our set. Therefore, at
the end of the process, we are left with a subset Z C X, with |Z| > (HpEJP’ p%) |X|= N + 1, such that for
each p and any two distinct a,b € Z, we must have v,(a) # vp(b). We now work on the elements of Z, in
exactly the same way as in our first proof, in order to obtain a list ay,...,a; (for some ¢t < N) of elements
of Z such that, for all p € P, the element a € Z with least possible value for v,(a) is already listed among
the a;. Just as in our first proof, since |Z| > N, we may choose an a € X not listed among the a;, so that
vplar + -+ a;+a) =vp(ar + - - +a) for all p € P and, since the p € P are all the prime numbers, we may

conclude that a; +---+a; +a =ay + --- + a; so that a = 0, a contradiction.

|:|Second proof
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