Variations on a theme: Ramsey's and Hindman's theorem

David J. Fernández-Bretón
Univer Alichigan On the move
joint works with elements of the set $\{\varnothing$, J. Brot, M. Cao, S. H. Lee, A. Rinot $\}$

10th BLAST conference University of Denver

August 9, 2018

What is Ramsey theory?

What is Ramsey theory?

Theorem

In every party with at least 6 attendees, there are three of them that either mutually know each other or are mutually unknown to each other.

Proof.

What is Ramsey theory?

Theorem
Whenever we colour the edges of a complete graph with at least 6 vertices using two colours, there will necessarily be a monochromatic triangle.

Proof.

What is Ramsey theory?

Theorem

Whenever we colour the edges of a complete graph with at least 6 vertices using two colours, there will necessarily be a monochromatic triangle.

Proof.

What is Ramsey theory?

Theorem

Whenever we colour the edges of a complete graph with at least 6 vertices using two colours, there will necessarily be a monochromatic triangle.

Proof.

What is Ramsey theory?

Theorem

Whenever we colour the edges of a complete graph with at least 6 vertices using two colours, there will necessarily be a monochromatic triangle.

Proof.

What is Ramsey theory?

Theorem

Whenever we colour the edges of a complete graph with at least 6 vertices using two colours, there will necessarily be a monochromatic triangle.

Proof.

What is Ramsey theory?

Theorem

Whenever we colour the edges of a complete graph with at least 6 vertices using two colours, there will necessarily be a monochromatic triangle.

Proof.

Ramsey's theorem

Ramsey's theorem

Theorem

For every $n \in \mathbb{N}$ there exists an $R(n) \in \mathbb{N}$ such that for every coulouring $c:[R(n)]^{2} \longrightarrow 2$ there exists an $X \subseteq R(n)$ with $|X|=n$ such that $\left|c^{"}[X]^{2}\right|=1$ (i.e. there is a monochromatic complete induced subgraph with n vertices).

Ramsey's theorem

Theorem

For every $n \in \mathbb{N}$ there exists an $R(n) \in \mathbb{N}$ such that for every coulouring $c:[R(n)]^{2} \longrightarrow 2$ there exists an $X \subseteq R(n)$ with $|X|=n$ such that $\left|c^{\prime \prime}[X]^{2}\right|=1$ (i.e. there is a monochromatic complete induced subgraph with n vertices).

Theorem
For every colouring $c:[\omega]^{2} \longrightarrow 2$ there exists an infinite $X \subseteq \omega$ such that $[X]^{2}$ is monochromatic (i.e. there is an infinite monochromatic induced subgraph).

Hindman's theorem

Hindman's theorem

Given an X, we denote by $\mathrm{FS}(X)=\left\{\left.\sum_{x \in F} x\right|_{F \in[X]^{<\omega} \backslash\{\varnothing\}}\right\}$.

Hindman's theorem

Given an X, we denote by $\mathrm{FS}(X)=\left\{\sum_{x \in F} x \mid F \in[X]^{<\omega} \backslash\{\varnothing\}\right\}$.

Theorem
For every colouring $c: \mathbb{N} \longrightarrow 2$, there exists an infinite $X \subseteq \mathbb{N}$ such that $\operatorname{FS}(X)$ is monochromatic.

Hindman's theorem

Given an X, we denote by $\operatorname{FS}(X)=\left\{\sum_{x \in F} x \mid F \in[X]^{<\omega} \backslash\{\varnothing\}\right\}$.

Theorem
For every colouring $c: \mathbb{N} \longrightarrow 2$, there exists an infinite $X \subseteq \mathbb{N}$ such that $\mathrm{FS}(X)$ is monochromatic.

Theorem

For every infinite abelian group G and every colouring $c: G \longrightarrow 2$, there exists an infinite $X \subseteq G$ such that $\mathrm{FS}(X)$ is monochromatic.

Theme 1: The Čech-Stone compactification, aka ultrafilters

Theme 1: The Čech-Stone compactification, aka ultrafilters

Definition

An ultrafilter over a set X is a family $u \in \mathfrak{P}(\mathfrak{P}(X))$ satisfying:
(1) $(\forall A, B \subseteq X)(A \cap B \in u \Longleftrightarrow(A \in u \wedge B \in u))$,
(2) $(\forall A, B \subseteq X)(A \cup B \in u \Longleftrightarrow(A \in u \vee B \in u))$,
(3) $(\forall A \subseteq X)(A \in u \Longleftrightarrow X \backslash A \notin u)$.

Theme 1: The Čech-Stone compactification, aka ultrafilters

Definition

An ultrafilter over a set X is a family $u \in \mathfrak{P}(\mathfrak{P}(X))$ satisfying:
(1) $(\forall A, B \subseteq X)(A \cap B \in u \Longleftrightarrow(A \in u \wedge B \in u))$,
(2) $(\forall A, B \subseteq X)(A \cup B \in u \Longleftrightarrow(A \in u \vee B \in u))$,
(3) $(\forall A \subseteq X)(A \in u \Longleftrightarrow X \backslash A \notin u)$.

Given a set X, thought of as a discrete topological space, the Čech-Stone compactification of X can be realized as the set βX of all ultrafilters over X, topologized by letting the sets

$$
\{u \in \beta X \mid u \in A\}
$$

be open, for all $A \subseteq X$.

Selective ultrafilters

Selective ultrafilters

Definition

An ultrafilter $u \in \beta \omega \backslash \omega$ is said to be selective if for every colouring $c:[\omega]^{2} \longrightarrow 2$ there exists an $A \in u$ such that $[A]^{2}$ is c-monochromatic.

Selective ultrafilters

Definition

An ultrafilter $u \in \beta \omega \backslash \omega$ is said to be selective if for every colouring $c:[\omega]^{2} \longrightarrow 2$ there exists an $A \in u$ such that $[A]^{2}$ is c-monochromatic.

Selective ultrafilters turn out to be extremely important amongst ultrafilters. Their existence is independent of the ZFC axioms.

Selective ultrafilters

Definition

An ultrafilter $u \in \beta \omega \backslash \omega$ is said to be selective if for every colouring $c:[\omega]^{2} \longrightarrow 2$ there exists an $A \in u$ such that $[A]^{2}$ is c-monochromatic.

Selective ultrafilters turn out to be extremely important amongst ultrafilters. Their existence is independent of the ZFC axioms.

Properties

(1) Selective ultrafilters are minimal in the Rudin-Keisler ordering,
(2) u is selective iff $\prod \omega / u$ has only one constellation (i.e. for any two nonstandard natural numbers N, M, there exists a standard f such that $f(N)=M)$.

Strongly summable ultrafilters

Strongly summable ultrafilters

Definition
If G is an abelian group, an ultrafilter $u \in \beta G \backslash G$ is said to be strongly summable if for every colouring $c: G \longrightarrow 2$ there exists an X such that $\mathrm{FS}(A) \in u$ and $\mathrm{FS}(A)$ is c-monochromatic.

Strongly summable ultrafilters

Definition
If G is an abelian group, an ultrafilter $u \in \beta G \backslash G$ is said to be strongly summable if for every colouring $c: G \longrightarrow 2$ there exists an X such that $\mathrm{FS}(A) \in u$ and $\mathrm{FS}(A)$ is c-monochromatic.

Strongly summable ultrafilters turn out to be extremely important when analyzing the algebraic structure of βG. Their existence is independent of the ZFC axioms.

Strongly summable ultrafilters

Definition

If G is an abelian group, an ultrafilter $u \in \beta G \backslash G$ is said to be strongly summable if for every colouring $c: G \longrightarrow 2$ there exists an X such that $\mathrm{FS}(A) \in u$ and $\mathrm{FS}(A)$ is c-monochromatic.

Strongly summable ultrafilters turn out to be extremely important when analyzing the algebraic structure of βG. Their existence is independent of the ZFC axioms.

Properties

(1) They are idempotent (i.e. $u+u=u$).
(2) They have the trivial sums property (that is, whenever $u=v+w$, there must be an $x \in G$ such that $\{v, w\}=\{x+u,-x+u\})$.

The Boolean group

Extremely important for us will be the Boolean group, realized as $\left([\omega]^{<\omega}, \triangle\right)$. We will denote it by \mathbb{B}.

The Boolean group

Extremely important for us will be the Boolean group, realized as $\left([\omega]^{<\omega}, \triangle\right)$. We will denote it by \mathbb{B}.

Theorem (F.-B.)

If G is any infinite abelian group, and $u \in \beta G$ is strongly summable, then u is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

The Boolean group

Extremely important for us will be the Boolean group, realized as $\left([\omega]^{<\omega}, \triangle\right)$. We will denote it by \mathbb{B}.

Theorem (F.-B.)

If G is any infinite abelian group, and $u \in \beta G$ is strongly summable, then u is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group G is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B}.

The Boolean group

Extremely important for us will be the Boolean group, realized as $\left([\omega]^{<\omega}, \triangle\right)$. We will denote it by \mathbb{B}.

Theorem (F.-B.)

If G is any infinite abelian group, and $u \in \beta G$ is strongly summable, then u is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group G is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B}.

Questions

(1) Are strongly summable ultrafilters selective?

The Boolean group

Extremely important for us will be the Boolean group, realized as $\left([\omega]^{<\omega}, \triangle\right)$. We will denote it by \mathbb{B}.

Theorem (F.-B.)

If G is any infinite abelian group, and $u \in \beta G$ is strongly summable, then u is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group G is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B}.

Questions

(1) Are strongly summable ultrafilters selective?

No.

The Boolean group

Extremely important for us will be the Boolean group, realized as $\left([\omega]^{<\omega}, \triangle\right)$. We will denote it by \mathbb{B}.

Theorem (F.-B.)

If G is any infinite abelian group, and $u \in \beta G$ is strongly summable, then u is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group G is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B}.

Questions

(1) Are strongly summable ultrafilters selective? No.
(2) Does the existence of a strongly summable ultrafilter imply the existence of a selective ultrafilter?

The Boolean group

Extremely important for us will be the Boolean group, realized as $\left([\omega]^{<\omega}, \triangle\right)$. We will denote it by \mathbb{B}.

Theorem (F.-B.)

If G is any infinite abelian group, and $u \in \beta G$ is strongly summable, then u is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group G is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B}.

Questions

(1) Are strongly summable ultrafilters selective? No.
(2) Does the existence of a strongly summable ultrafilter imply the existence of a selective ultrafilter?
?

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Theorem (Milliken-Taylor)
For every colouring $c:[\mathbb{B}]^{2} \longrightarrow 2$, there exists an infinite
$X \subseteq \mathbb{B}$ such that the set

$$
[\mathrm{FS}(X)]^{2}=\{\langle x, y\rangle \mid x, y \in \mathrm{FS}(X)
$$

is monochromatic.

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Theorem (Milliken-Taylor)
For every colouring $c:[\mathbb{B}]^{2} \longrightarrow 2$, there exists an infinite ordered $X \subseteq \mathbb{B}$ such that the set

$$
[\mathrm{FS}(X)]^{2}=\{\langle x, y\rangle \mid x, y \in \mathrm{FS}(X)
$$

is monochromatic.

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Theorem (Milliken-Taylor)
For every colouring $c:[\mathbb{B}]^{2} \longrightarrow 2$, there exists an infinite ordered $X \subseteq \mathbb{B}$ such that the set

$$
[\mathrm{FS}(X)]_{<}^{2}=\{\langle x, y\rangle \mid x, y \in \mathrm{FS}(X) \text { and }(\max (x)<\min (y) \vee \max (y)<\min (x))\}
$$

is monochromatic.

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Theorem (Milliken-Taylor)
For every colouring $c:[\mathbb{B}]^{2} \longrightarrow 2$, there exists an infinite ordered $X \subseteq \mathbb{B}$ such that the set

$$
[\mathrm{FS}(X)]_{<}^{2}=\{\langle x, y\rangle \mid x, y \in \mathrm{FS}(X) \text { and }(\max (x)<\min (y) \vee \max (y)<\min (x))\}
$$ is monochromatic.

Definition

An ultrafilter $u \in \beta \mathbb{B}$ is said to be stable ordered union if for every colouring $c:[\mathbb{B}]^{2} \longrightarrow 2$ there exists an infinite ordered $X \subseteq \mathbb{B}$ such that $\operatorname{FS}(X) \in u$ and $[\mathrm{FS}(X)]_{<}^{2}$ is monochromatic.

Milliken-Taylor is stronger than Ramsey $\times 2$

Milliken-Taylor is stronger than Ramsey $\times 2$

Theorem (Blass-Hindman)

If there exists a stable ordered union ultrafilter, then there are two non-isomorphic selective ultrafilters.

Milliken-Taylor is stronger than Ramsey $\times 2$

Theorem (Blass-Hindman)

If there exists a stable ordered union ultrafilter, then there are two non-isomorphic selective ultrafilters.

Questions

(1) Does the existence of a strongly summable ultrafilter imply the existence of a stable ordered union ultrafilter?
(2) Does the existence of a strongly summable ultrafilter imply the existence of a selective ultrafilter?

Theme 2: Cardinal Characteristics of the Continuum

Theme 2: Cardinal Characteristics of the Continuum

A cardinal characteristic of the continuum is a cardinal which is combinatorially defined, and which is (provably in ZFC) between ω_{1} and c .

Theme 2: Cardinal Characteristics of the Continuum

A cardinal characteristic of the continuum is a cardinal which is combinatorially defined, and which is (provably in ZFC) between ω_{1} and c .

Example

$$
\operatorname{non}(\mathcal{N})=\min \left\{|X| \mid X \subseteq \mathbb{R} \wedge \mu^{*}(X) \neq 0\right\}
$$

Theme 2: Cardinal Characteristics of the Continuum

A cardinal characteristic of the continuum is a cardinal which is combinatorially defined, and which is (provably in ZFC) between ω_{1} and c .

Example

$$
\operatorname{non}(\mathcal{N})=\min \left\{|X| \mid X \subseteq \mathbb{R} \wedge \mu^{*}(X) \neq 0\right\}
$$

note that $\omega_{1} \leq \operatorname{non}(\mathcal{N}) \leq \boldsymbol{c}$.

Theme 2: Cardinal Characteristics of the Continuum

A cardinal characteristic of the continuum is a cardinal which is combinatorially defined, and which is (provably in ZFC) between ω_{1} and c .

Example

$$
\operatorname{non}(\mathcal{N})=\min \left\{|X| \mid X \subseteq \mathbb{R} \wedge \mu^{*}(X) \neq 0\right\}
$$

note that $\omega_{1} \leq \operatorname{non}(\mathcal{N}) \leq \boldsymbol{c}$.

Studying cardinal characteristics of the continuum is, in a sense, a way (the only way that nowadays -after Gödel's and Cohen's results- makes sense) of studying the Continuum Hypothesis, by investigating all of the complexity that might inhabit the space between ω_{1} and \mathfrak{c}, should the CH fail.

A characteristic associated to Ramsey's theorem

Definition

$$
\mathfrak{h o m}=\min \left\{|\mathscr{X}| \mid\left(\forall c:[\omega]^{2} \longrightarrow 2\right)(\exists X \in \mathscr{X})\left([X]^{2} \text { is monochromatic }\right)\right\} .
$$

A characteristic associated to Ramsey's theorem

Definition

$$
\mathfrak{h o m}=\min \left\{\mid \mathscr{X} \|\left(\forall c:[\omega]^{2} \longrightarrow 2\right)(\exists X \in \mathscr{X})\left([X]^{2} \text { is monochromatic }\right)\right\} .
$$

It is known that

A characteristic associated to Ramsey's theorem

Definition

$$
\mathfrak{h o m}=\min \left\{|\mathscr{X}| \mid\left(\forall c:[\omega]^{2} \longrightarrow 2\right)(\exists X \in \mathscr{X})\left([X]^{2} \text { is monochromatic }\right)\right\} .
$$

It is known that

$$
\mathfrak{h o m}=\max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}
$$

A characteristic associated to Ramsey's theorem

Definition

$$
\mathfrak{h o m}=\min \left\{\mid \mathscr{X} \|\left(\forall c:[\omega]^{2} \longrightarrow 2\right)(\exists X \in \mathscr{X})\left([X]^{2} \text { is monochromatic }\right)\right\} .
$$

It is known that

$$
\mathfrak{h o m}=\max \left\{\mathfrak{d}, \mathfrak{r}_{\sigma}\right\}
$$

(where \mathfrak{d} is the dominating number, and \mathfrak{r}_{σ} is the σ-version of the reaping
number).

Characteristics associated to Hindman's/Milliken-Taylor's theorems

Definition

We define $\mathfrak{h o m}{ }_{H}^{n}$ to be the least cardinality of a family \mathscr{X}, each of whose elements is an infinite ordered $X \subseteq \mathbb{B}$, such that for every $c:[\mathbb{B}]^{n} \longrightarrow 2$ there exists an $X \in \mathscr{X}$ such that $[\mathrm{FS}(X)]_{<}^{n}$ is monochromatic.

Characteristics associated to Hindman's/Milliken-Taylor's theorems

Definition

We define $\mathfrak{h o m}{ }_{H}^{n}$ to be the least cardinality of a family \mathscr{X}, each of whose elements is an infinite ordered $X \subseteq \mathbb{B}$, such that for every $c:[\mathbb{B}]^{n} \longrightarrow 2$ there exists an $X \in \mathscr{X}$ such that $[\mathrm{FS}(X)]_{<}^{n}$ is monochromatic.

It is straightforward to show that we must have $\mathfrak{h o m}{ }_{H}^{1} \leq \mathfrak{h o m}_{H}^{2} \leq \cdots \leq \mathfrak{h o m}_{H}^{n} \leq \mathfrak{h o m}_{H}^{n+1} \leq \cdots$. Also, it is known that $\max \{\mathfrak{d}, \mathfrak{r}\} \leq \mathfrak{h o m}{ }_{H}^{1}$.

Characteristics associated to Hindman's/Milliken-Taylor's theorems

Definition

We define $\mathfrak{h o m}{ }_{H}^{n}$ to be the least cardinality of a family \mathscr{X}, each of whose elements is an infinite ordered $X \subseteq \mathbb{B}$, such that for every $c:[\mathbb{B}]^{n} \longrightarrow 2$ there exists an $X \in \mathscr{X}$ such that $[\mathrm{FS}(X)]_{<}^{n}$ is monochromatic.

It is straightforward to show that we must have $\mathfrak{h o m}{ }_{H}^{1} \leq \mathfrak{h o m}_{H}^{2} \leq \cdots \leq \mathfrak{h o m}_{H}^{n} \leq \mathfrak{h o m}_{H}^{n+1} \leq \cdots$. Also, it is known that $\max \{\mathfrak{d}, \mathfrak{r}\} \leq \mathfrak{h o m}{ }_{H}^{1}$.

Theorem (F.-B.)

$$
\mathfrak{h o m}_{H}^{2}=\mathfrak{h o m}_{H}^{3}=\cdots=\mathfrak{h o m}_{H}^{n}=\cdots
$$

The unknown

Therefore, there are fundamentally only two cardinal characteristics: $\mathfrak{h o m}{ }_{H}^{1}$ and $\mathfrak{h o m}{ }_{H}^{2}$ (let's rename them $\mathfrak{h o m}_{H}$ and $\mathfrak{h o m}{ }_{M T}$, respectively). The known relationships are as follows (an arrow means a ZFC-provable inequality).

The unknown

Therefore, there are fundamentally only two cardinal characteristics: $\mathfrak{h o m}{ }_{H}^{1}$ and $\mathfrak{h o m}{ }_{H}^{2}$ (let's rename them $\mathfrak{h o m}_{H}$ and $\mathfrak{h o m}{ }_{M T}$, respectively). The known relationships are as follows (an arrow means a ZFC-provable inequality).

The unknown

Therefore, there are fundamentally only two cardinal characteristics: $\mathfrak{h o m}{ }_{H}^{1}$ and $\mathfrak{h o m}_{H}^{2}$ (let's rename them $\mathfrak{h o m}{ }_{H}$ and $\mathfrak{h o m}{ }_{M T}$, respectively). The known relationships are as follows (an arrow means a ZFC-provable inequality).

In particular, it follows that $\mathfrak{h o m}_{M T} \geq \mathfrak{h o m}$, so at least in the context of cardinal characteristics of the continuum, the Milliken-Taylor theorem is stronger than Ramsey's theorem (duh!!!).

The unknown

Therefore, there are fundamentally only two cardinal characteristics: $\mathfrak{h o m}{ }_{H}^{1}$ and $\mathfrak{h o m}_{H}^{2}$ (let's rename them $\mathfrak{h o m}{ }_{H}$ and $\mathfrak{h o m}{ }_{M T}$, respectively). The known relationships are as follows (an arrow means a ZFC-provable inequality).

In particular, it follows that $\mathfrak{h o m}_{M T} \geq \mathfrak{h o m}$, so at least in the context of cardinal characteristics of the continuum, the Milliken-Taylor theorem is stronger than Ramsey's theorem (duh!!!). However, how about Hindman's theorem?

Some open questions

Questions

(1) Is it consistent that $\mathfrak{h o m}<\mathfrak{h o m}_{H}$ or $\mathfrak{h o m}<\mathfrak{h o m}_{M T}$?

Some open questions

Questions

(1) Is it consistent that hom $<\mathfrak{h o m}_{H}$ or $\mathfrak{h o m}<\mathfrak{h o m}_{M T}$?
(2) Is it consistent that $\mathfrak{h o m}_{H}<\mathfrak{r}_{\sigma}$?

Some open questions

Questions

(1) Is it consistent that $\mathfrak{h o m}<\mathfrak{h o m}_{H}$ or $\mathfrak{h o m}<\mathfrak{h o m}_{M T}$?
(2) Is it consistent that $\mathfrak{h o m}_{H}<\mathfrak{r}_{\sigma}$? (this one is potentially very hard)

Some open questions

Questions

(1) Is it consistent that hom $<\mathfrak{h o m}_{H}$ or $\mathfrak{h o m}<\mathfrak{h o m}_{M T}$?
(2) Is it consistent that $\mathfrak{h o m}_{H}<\mathfrak{r}_{\sigma}$? (this one is potentially very hard)
(3) Is any of the two "downward-right" arrows reversible?

Some open questions

Questions

(1) Is it consistent that hom $<\mathfrak{h o m}_{H}$ or $\mathfrak{h o m}<\mathfrak{h o m}_{M T}$?
(2) Is it consistent that $\mathfrak{h o m}_{H}<\mathfrak{r}_{\sigma}$? (this one is potentially very hard)
(3) Is any of the two "downward-right" arrows reversible? (once again, this is potentially an extremely hard problem)

Theme 3: Uncountable cardinalities

Theme 3: Uncountable cardinalities

Theorem (Erdős-Rado)

For every infinite cardinal κ, there exists a sufficiently large λ (in fact, it suffices to take $\lambda=\left(2^{\kappa}\right)^{+}$) such that for every colouring $c:[\lambda]^{2} \longrightarrow 2$ there exists an $X \subseteq \lambda$ with $|X|=\kappa$ such that $[X]^{2}$ is monochromatic.

Theme 3: Uncountable cardinalities

Theorem (Erdős-Rado)

For every infinite cardinal κ, there exists a sufficiently large λ (in fact, it suffices to take $\lambda=\left(2^{\kappa}\right)^{+}$) such that for every colouring $c:[\lambda]^{2} \longrightarrow 2$ there exists an $X \subseteq \lambda$ with $|X|=\kappa$ such that $[X]^{2}$ is monochromatic.

Theorem

If an uncountable cardinal κ has the property that for every colouring $c:[\kappa]^{2} \longrightarrow 2$ there exists an $X \subseteq \kappa$ with $|X|=\kappa$ and $[X]^{2}$ monochromatic, then κ is very, very large (or actually, not so large... technically, κ is said to be a weakly compact cardinal).

Can we get analogous results for monochromatic FS-sets?

Can we get analogous results for monochromatic FS-sets?

Theorem (F.-B.)
Let G be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, the set $\mathrm{FS}(X)$ is not monochromatic.

Can we get analogous results for monochromatic FS-sets?

Theorem (F.-B.)
Let G be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, the set $\mathrm{FS}(X)$ is not monochromatic.

Theorem (F.-B. and Rinot)
Let G be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set $\mathrm{FS}(X)$ is panchromatic.

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)
Let G be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set $\mathrm{FS}(X)$ is panchromatic.

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)
Let G be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set $\mathrm{FS}(X)$ is panchromatic.

Can we do better?

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)
Let G be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set $\mathrm{FS}(X)$ is panchromatic.

Can we do better? It turns out that the answer to this question is "yes and no":
Theorem (F.B. and Rinot)

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)
Let G be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set $\mathrm{FS}(X)$ is panchromatic.

Can we do better? It turns out that the answer to this question is "yes and no":
Theorem (F.B. and Rinot)
(1) It is consistent with ZFC that for every uncountable abelian group G there exists a colouring $c: G \longrightarrow \omega_{1}$ such that every uncountable $X \subseteq G$ satisfies that $\mathrm{FS}(X)$ is panchromatic.

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)
Let G be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set $\mathrm{FS}(X)$ is panchromatic.

Can we do better? It turns out that the answer to this question is "yes and no":
Theorem (F.B. and Rinot)
(1) It is consistent with ZFC that for every uncountable abelian group G there exists a colouring $c: G \longrightarrow \omega_{1}$ such that every uncountable $X \subseteq G$ satisfies that $\mathrm{FS}(X)$ is panchromatic.
(2) Modulo large cardinals -extremely mild ones-, it is consistent with ZFC that for every colouring $c: \mathbb{R} \longrightarrow \omega_{1}$, there is an uncountable $X \subseteq G$ such that $\mathrm{FS}(X)$ only hits countably many colours.

It fails really badly...

Theorem (F.-B. and Rinot)
For many, many cardinals κ

It fails really badly...

Theorem (F.-B. and Rinot)
For many, many cardinals κ (don't ask!!!)

It fails really badly...

Theorem (F.-B. and Rinot)

For many, many cardinals κ (don't ask!!!) it is the case that for every abelian group G with $|G|=\kappa$, there exists a colouring $c: G \longrightarrow \kappa$ such that every $X \subseteq G$ with $|X|=\kappa$ must satisfy that $\mathrm{FS}(X)$ is panchromatic.

It fails really badly...

Theorem (F.-B. and Rinot)
For many, many cardinals κ (don't ask!!!) it is the case that for every abelian group G with $|G|=\kappa$, there exists a colouring $c: G \longrightarrow \kappa$ such that every $X \subseteq G$ with $|X|=\kappa$ must satisfy that $\mathrm{FS}(X)$ is panchromatic.
(It is consistent that these κ include all regular cardinals, and it is consistent that \mathfrak{c} finds itself amongst these κ.)

Many colours, small monochromatic sets

Many colours, small monochromatic sets

Theorem (Komjáth)
Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c: \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_{1}, \ldots, x_{n} \in \mathbb{B}(\lambda)$ such that $\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)$ is monochromatic.

Many colours, small monochromatic sets

Theorem (Komjáth)
Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c: \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_{1}, \ldots, x_{n} \in \mathbb{B}(\lambda)$ such that $\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)$ is monochromatic.

Theorem (F.-B. and Lee)

Many colours, small monochromatic sets

Theorem (Komjáth)
Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c: \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_{1}, \ldots, x_{n} \in \mathbb{B}(\lambda)$ such that $\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)$ is monochromatic.

Theorem (F.-B. and Lee)
(1) Given any cardinal κ, there is a sufficiently large λ

Many colours, small monochromatic sets

Theorem (Komjáth)
Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c: \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_{1}, \ldots, x_{n} \in \mathbb{B}(\lambda)$ such that $\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)$ is monochromatic.

Theorem (F.-B. and Lee)

(1) Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!)

Many colours, small monochromatic sets

Theorem (Komjáth)
Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c: \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_{1}, \ldots, x_{n} \in \mathbb{B}(\lambda)$ such that $\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)$ is monochromatic.

Theorem (F.-B. and Lee)

(1) Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!) such that for every abelian group G of cardinality λ, it is the case that for every $c: G \longrightarrow \kappa$ there are $x, y \in G$ such that $\mathrm{FS}(x, y)=\{x, y, x+y\}$ is monochromatic.

Many colours, small monochromatic sets

Theorem (Komjáth)
Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c: \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_{1}, \ldots, x_{n} \in \mathbb{B}(\lambda)$ such that $\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)$ is monochromatic.

Theorem (F.-B. and Lee)

(1) Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!) such that for every abelian group G of cardinality λ, it is the case that for every $c: G \longrightarrow \kappa$ there are $x, y \in G$ such that $\mathrm{FS}(x, y)=\{x, y, x+y\}$ is monochromatic. Furthermore, our λ is optimal.

Many colours, small monochromatic sets

Theorem (Komjáth)
Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c: \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_{1}, \ldots, x_{n} \in \mathbb{B}(\lambda)$ such that $\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)$ is monochromatic.

Theorem (F.-B. and Lee)

(1) Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!) such that for every abelian group G of cardinality λ, it is the case that for every $c: G \longrightarrow \kappa$ there are $x, y \in G$ such that $\mathrm{FS}(x, y)=\{x, y, x+y\}$ is monochromatic. Furthermore, our λ is optimal.
(2) The " $n=2$ " in our item (1) above is also optimal.

Many colours, small monochromatic sets

Theorem (Komjáth)
Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c: \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_{1}, \ldots, x_{n} \in \mathbb{B}(\lambda)$ such that $\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)$ is monochromatic.

Theorem (F.-B. and Lee)

(1) Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!) such that for every abelian group G of cardinality λ, it is the case that for every $c: G \longrightarrow \kappa$ there are $x, y \in G$ such that $\mathrm{FS}(x, y)=\{x, y, x+y\}$ is monochromatic. Furthermore, our λ is optimal.
(2) The " $n=2$ " in our item (1) above is also optimal. That is, there are arbitrarily large abelian groups G such that there exists a $c: G \longrightarrow \omega$ satisfying that for every $x, y, z \in G$, the set

$$
\mathrm{FS}(x, y, z)=\{x, y, z, x+y, y+z, x+z, x+y+z\}
$$

is not monochromatic.

Theme 4: Set theory without the Axiom of Choice

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite:

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets,

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets, or equivalently,

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets, or equivalently,
(2) every injective function : $X \longrightarrow X$ must be surjective,

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets, or equivalently,
(2) every injective function : $X \longrightarrow X$ must be surjective, or equivalently,

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets, or equivalently,
(2) every injective function : $X \longrightarrow X$ must be surjective, or equivalently,
(3) there is no injective function : $\omega \longrightarrow X$,

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets, or equivalently,
(2) every injective function : $X \longrightarrow X$ must be surjective, or equivalently,
(3) there is no injective function : $\omega \longrightarrow X$, or equivalently,

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets, or equivalently,
(2) every injective function : $X \longrightarrow X$ must be surjective, or equivalently,
(3) there is no injective function : $\omega \longrightarrow X$, or equivalently,
(4) X has no countable subsets.

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets, or equivalently,
(2) every injective function : $X \longrightarrow X$ must be surjective, or equivalently,
(3) there is no injective function : $\omega \longrightarrow X$, or equivalently,
(9) X has no countable subsets.

In ZF, it is possible to thoroughly study the sheer variety of different infinite Dedekind-finite sets that might exist.

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but Dedekind-finite: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that
(1) There is no bijection between X and any of its proper subsets, or equivalently,
(2) every injective function : $X \longrightarrow X$ must be surjective, or equivalently,
(3) there is no injective function : $\omega \longrightarrow X$, or equivalently,
(9) X has no countable subsets.

In ZF, it is possible to thoroughly study the sheer variety of different infinite Dedekind-finite sets that might exist. There is a notion of a finiteness class. The smallest finiteness class is the class of all finite sets, and the largest finiteness class is the class of all Dedekind-finite sets.

Ramsey's and Hindman's theorems without choice

Ramsey's and Hindman's theorems without choice

In ZFC (or even in something like ZF plus countable choice), every infinite set must be Dedekind-infinite.

Ramsey's and Hindman's theorems without choice

In ZFC (or even in something like ZF plus countable choice), every infinite set must be Dedekind-infinite.

Therefore, in such a theory, it follows more or less trivially from the usual Ramsey's theorem (for ω) that whenever X is an infinite set, for every $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is c-monochromatic,

Ramsey's and Hindman's theorems without choice

In ZFC (or even in something like ZF plus countable choice), every infinite set must be Dedekind-infinite.

Therefore, in such a theory, it follows more or less trivially from the usual Ramsey's theorem (for ω) that whenever X is an infinite set, for every $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is c-monochromatic,
and it also follows more or less trivially from the usual Hindman's theorem (on the Boolean group $\mathbb{B}=[\omega]^{<\omega}$) that whenever X is an infinite set, for every $c:[X]^{<\omega} \longrightarrow 2$ there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}(Y)$ is monochromatic.

Ramsey's and Hindman's theorems without choice

In ZFC (or even in something like ZF plus countable choice), every infinite set must be Dedekind-infinite.

Therefore, in such a theory, it follows more or less trivially from the usual Ramsey's theorem (for ω) that whenever X is an infinite set, for every $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is c-monochromatic,
and it also follows more or less trivially from the usual Hindman's theorem (on the Boolean group $\left.\mathbb{B}=[\omega]^{<\omega}\right)$ that whenever X is an infinite set, for every $c:[X]^{<\omega} \longrightarrow 2$ there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}(Y)$ is monochromatic. Furthermore, we can take such a Y to be pairwise disjoint.

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be H-infinite if for every colouring $c:[X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}(X)$ is monochromatic.

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be H-infinite if for every colouring $c:[X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}(X)$ is monochromatic. We similarly define H_{pwd}-infinite if we can find such a Y to be pairwise disjoint,

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be H-infinite if for every colouring $c:[X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}(X)$ is monochromatic. We similarly define H_{pwd}-infinite if we can find such a Y to be pairwise disjoint, and we write a further subscript n in either variation of the letter H if we can only guarantee that the set

$$
\mathrm{FS}_{n}(Y)=\left\{\sum_{x \in F} x|F \subseteq Y \wedge 0<|F| \leq n\}\right.
$$

is monochromatic.

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be H-infinite if for every colouring $c:[X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}(X)$ is monochromatic. We similarly define H_{pwd}-infinite if we can find such a Y to be pairwise disjoint, and we write a further subscript n in either variation of the letter H if we can only guarantee that the set

$$
\mathrm{FS}_{n}(Y)=\left\{\sum_{x \in F} x|F \subseteq Y \wedge 0<|F| \leq n\}\right.
$$

is monochromatic.
With these definitions, we immediately get the following implications:

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be H-infinite if for every colouring $c:[X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}(X)$ is monochromatic. We similarly define H_{pwd}-infinite if we can find such a Y to be pairwise disjoint, and we write a further subscript n in either variation of the letter H if we can only guarantee that the set

$$
\mathrm{FS}_{n}(Y)=\left\{\sum_{x \in F} x|F \subseteq Y \wedge 0<|F| \leq n\}\right.
$$

is monochromatic.
With these definitions, we immediately get the following implications:

An interesting collapse

An interesting collapse

Theorem (Brot, Cao, F.-B.)
For any set X, the following are equivalent:

An interesting collapse

Theorem (Brot, Cao, F.-B.)
For any set X, the following are equivalent:
(1) X is H-finite,

An interesting collapse

Theorem (Brot, Cao, F.-B.)
For any set X, the following are equivalent:
(1) X is H-finite,
(2) the finite powerset $[X]^{<\omega}$ of X is D-finite,

An interesting collapse

Theorem (Brot, Cao, F.-B.)
For any set X, the following are equivalent:
(1) X is H-finite,
(2) the finite powerset $[X]^{<\omega}$ of X is D-finite,
(3) X is H_{4}-finite,

An interesting collapse

Theorem (Brot, Cao, F.-B.)
For any set X, the following are equivalent:
(1) X is H-finite,
(2) the finite powerset $[X]^{<\omega}$ of X is D-finite,
(3) X is H_{4}-finite,
(9) X is $H_{\mathrm{pwd}, 2}$-finite.

An interesting collapse

Theorem (Brot, Cao, F.-B.)
For any set X, the following are equivalent:
(1) X is H-finite,
(2) the finite powerset $[X]^{<\omega}$ of X is D-finite,
(3) X is H_{4}-finite,
(9) X is $H_{\mathrm{pwd}, 2}$-finite.

Therefore, most of these notions of finiteness collapse and we are only left with (at most) three of them: H -finite, H_{2}-finite and H_{3}-finite.

Finiteness classes arising from Hindman's theorem

Our big diagram from the previous slide has collapsed to the following small one:
finite $\Longrightarrow H_{2}$-finite $\Longrightarrow H_{3}$-finite $\Longrightarrow H$-finite $\Longrightarrow D$-finite

Finiteness classes arising from Hindman's theorem

Our big diagram from the previous slide has collapsed to the following small one:
finite $\Longrightarrow H_{2}$-finite $\Longrightarrow H_{3}$-finite $\Longrightarrow H$-finite $\Longrightarrow D$-finite We know that the black arrows are not reversible in ZF.

Finiteness classes arising from Hindman's theorem

Our big diagram from the previous slide has collapsed to the following small one:
finite $\Longrightarrow H_{2}$-finite $\Longrightarrow H_{3}$-finite $\Longrightarrow H$-finite $\Longrightarrow D$-finite We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_{3}-finite to H -finite) is reversible.

Finiteness classes arising from Hindman's theorem

Our big diagram from the previous slide has collapsed to the following small one:
finite $\Longrightarrow H_{2}$-finite $\Longrightarrow H_{3}$-finite $\Longrightarrow H$-finite $\Longrightarrow D$-finite We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_{3}-finite to H-finite) is reversible. The following shows that this question is a really hard one.

Theorem (Brot, Cao, F.-B.)

Finiteness classes arising from Hindman's theorem

Our big diagram from the previous slide has collapsed to the following small one:
finite $\Longrightarrow H_{2}$-finite $\Longrightarrow H_{3}$-finite $\Longrightarrow H$-finite $\Longrightarrow D$-finite We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_{3}-finite to H-finite) is reversible. The following shows that this question is a really hard one.

Theorem (Brot, Cao, F.-B.)
It is consistent with ZF that there exists an H-finite set X satisfying that:

Finiteness classes arising from Hindman's theorem

Our big diagram from the previous slide has collapsed to the following small one:
finite $\Longrightarrow H_{2}$-finite $\Longrightarrow H_{3}$-finite $\Longrightarrow H$-finite $\Longrightarrow D$-finite
We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_{3}-finite to H-finite) is reversible. The following shows that this question is a really hard one.

Theorem (Brot, Cao, F.-B.)
It is consistent with ZF that there exists an H-finite set X satisfying that: for every colouring $c:[X]^{<\omega} \longrightarrow 2$
there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}_{3}(Y)$ is monochromatic.

Finiteness classes arising from Hindman's theorem

Our big diagram from the previous slide has collapsed to the following small one:
finite $\Longrightarrow H_{2}$-finite $\Longrightarrow H_{3}$-finite $\Longrightarrow H$-finite $\Longrightarrow D$-finite
We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_{3}-finite to H-finite) is reversible. The following shows that this question is a really hard one.

Theorem (Brot, Cao, F.-B.)

It is consistent with ZF that there exists an H-finite set X satisfying that: for every colouring $c:[X]^{<\omega} \longrightarrow 2$ such that for some $g: \omega \longrightarrow 2$ the following diagram commutes

there exists an infinite $Y \subseteq[X]^{<\omega}$ such that $\mathrm{FS}_{3}(Y)$ is monochromatic.

Finiteness classes arising from Ramsey's theorem

Definition
A set X will be said to be R^{n}-finite if for every colouring $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is monochromatic.

Finiteness classes arising from Ramsey's theorem

Definition

A set X will be said to be R^{n}-finite if for every colouring $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of R^{n}-finite for different n.

Finiteness classes arising from Ramsey's theorem

Definition

A set X will be said to be R^{n}-finite if for every colouring $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of R^{n}-finite for different n. However,

Theorem (Brot, Cao, F.-B.)

Finiteness classes arising from Ramsey's theorem

Definition

A set X will be said to be R^{n}-finite if for every colouring $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of R^{n}-finite for different n. However,

Theorem (Brot, Cao, F.-B.)
Suppose that X is either amorphous or linearly orderable. Then the following implications hold for X :

Finiteness classes arising from Ramsey's theorem

Definition

A set X will be said to be R^{n}-finite if for every colouring $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of R^{n}-finite for different n. However,

Theorem (Brot, Cao, F.-B.)
Suppose that X is either amorphous or linearly orderable. Then the following implications hold for X :

$$
\text { finite } \Longrightarrow R^{2} \text {-finite } \Longrightarrow R^{3} \text {-finite } \Longrightarrow \cdots \Longrightarrow D \text {-finite }
$$

Finiteness classes arising from Ramsey's theorem

Definition

A set X will be said to be R^{n}-finite if for every colouring $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of R^{n}-finite for different n. However,

Theorem (Brot, Cao, F.-B.)
Suppose that X is either amorphous or linearly orderable. Then the following implications hold for X :

$$
\text { finite } \Longrightarrow R^{2} \text {-finite } \Longrightarrow R^{3} \text {-finite } \Longrightarrow \cdots \Longrightarrow D \text {-finite }
$$

Furthermore, none of these arrows is reversible

Finiteness classes arising from Ramsey's theorem

Definition

A set X will be said to be R^{n}-finite if for every colouring $c:[X]^{n} \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^{n}$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of R^{n}-finite for different n. However,

Theorem (Brot, Cao, F.-B.)
Suppose that X is either amorphous or linearly orderable. Then the following implications hold for X :

$$
\text { finite } \Longrightarrow R^{2} \text {-finite } \Longrightarrow R^{3} \text {-finite } \Longrightarrow \cdots \Longrightarrow D \text {-finite }
$$

Furthermore, none of these arrows is reversible (and similar results where we consider colourings with different numbers of colours).

A somewhat surprising connection

A somewhat surprising connection

Theorem (Brot, Cao, F.-B.)
H_{2}-finite implies R^{2}-finite.

A somewhat surprising connection

Theorem (Brot, Cao, F.-B.)
H_{2}-finite implies R^{2}-finite.

Therefore, we now have an instance where Ramsey's theorem implies (a weak version of) Hindman's theorem.

A somewhat surprising connection

Theorem (Brot, Cao, F.-B.)
H_{2}-finite implies R^{2}-finite.

Therefore, we now have an instance where Ramsey's theorem implies (a weak version of) Hindman's theorem. In fact, this is just the fact that Ramsey's theorem implies Schur's theorem (i.e. Hindman's for $n=2$).

Connections with the old notions of finiteness

