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What is Ramsey theory?

What is Ramsey theory?

Theorem
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Theorem
In every party with at least 6 attendees, there are three of them that either
mutually know each other or are mutually unknown to each other.

Proof.
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Theorem
Whenever we colour the edges of a complete graph with at least 6 vertices
using two colours, there will necessarily be a monochromatic triangle.

Proof.
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What is Ramsey theory? Ramsey’s theorem

Ramsey’s theorem

Theorem

For every n ∈ N there exists an R(n) ∈ N such that for every coulouring
c : [R(n)]2 −→ 2 there exists an X ⊆ R(n) with |X| = n such that |c“[X]2| = 1
(i.e. there is a monochromatic complete induced subgraph with n vertices).

Theorem

For every colouring c : [ω]2 −→ 2 there exists an infinite X ⊆ ω such that [X]2

is monochromatic (i.e. there is an infinite monochromatic induced subgraph).
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What is Ramsey theory? Hindman’s theorem

Hindman’s theorem

Given an X, we denote by FS(X) =

{∑
x∈F

x

∣∣∣∣F ∈ [X]<ω \ {∅}

}
.

Theorem

For every colouring c : N −→ 2, there exists an infinite X ⊆ N such that FS(X)
is monochromatic.

Theorem
For every infinite abelian group G and every colouring c : G −→ 2, there exists
an infinite X ⊆ G such that FS(X) is monochromatic.
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Čech–Stone compactification/ultrafilters

Theme 1: The Čech–Stone compactification, aka
ultrafilters

Definition

An ultrafilter over a set X is a family u ∈ P(P(X)) satisfying:
1 (∀A,B ⊆ X)(A ∩B ∈ u ⇐⇒ (A ∈ u ∧B ∈ u)),
2 (∀A,B ⊆ X)(A ∪B ∈ u ⇐⇒ (A ∈ u ∨B ∈ u)),
3 (∀A ⊆ X)(A ∈ u ⇐⇒ X \A /∈ u).

Given a set X, thought of as a discrete topological space, the Čech–Stone
compactification of X can be realized as the set βX of all ultrafilters over X,
topologized by letting the sets

{u ∈ βX
∣∣u ∈ A}

be open, for all A ⊆ X.
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Čech–Stone compactification/ultrafilters Ramsey ultrafilters

Selective ultrafilters

Definition

An ultrafilter u ∈ βω \ ω is said to be selective if for every colouring
c : [ω]2 −→ 2 there exists an A ∈ u such that [A]2 is c-monochromatic.

Selective ultrafilters turn out to be extremely important amongst ultrafilters.
Their existence is independent of the ZFC axioms.

Properties
1 Selective ultrafilters are minimal in the Rudin-Keisler ordering,
2 u is selective iff

∏
ω/u has only one constellation (i.e. for any two

nonstandard natural numbers N,M , there exists a standard f such that
f(N) =M ).
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Čech–Stone compactification/ultrafilters Strongly summable ultrafilters

Strongly summable ultrafilters

Definition

If G is an abelian group, an ultrafilter u ∈ βG \G is said to be strongly
summable if for every colouring c : G −→ 2 there exists an X such that
FS(A) ∈ u and FS(A) is c-monochromatic.

Strongly summable ultrafilters turn out to be extremely important when
analyzing the algebraic structure of βG. Their existence is independent of the
ZFC axioms.

Properties
1 They are idempotent (i.e. u+ u = u).
2 They have the trivial sums property (that is, whenever u = v + w, there

must be an x ∈ G such that {v, w} = {x+ u,−x+ u}).

D. Fernández Ramsey and Hindman BLAST 2018, Denver 7 / 28
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Čech–Stone compactification/ultrafilters Strongly summable ultrafilters

The Boolean group

Extremely important for us will be the Boolean group, realized as ([ω]<ω,4).
We will denote it by B.

Theorem (F.-B.)

If G is any infinite abelian group, and u ∈ βG is strongly summable, then u is
additively isomorphic to some strongly summable v ∈ βB.

Thus, in a sense, the group G is insubstantial for strongly summable
ultrafilters; we can always assume that the relevant group is B.

Questions
1 Are strongly summable ultrafilters selective?

No.
2 Does the existence of a strongly summable ultrafilter imply the existence

of a selective ultrafilter?
?

D. Fernández Ramsey and Hindman BLAST 2018, Denver 8 / 28
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Čech–Stone compactification/ultrafilters The Milliken–Taylor theorem

Combining Ramsey’s and Hindman’s theorem, or a
higher dimensional version of Hindman’s theorem

Theorem (Milliken–Taylor)

For every colouring c : [B]2 −→ 2, there exists an infinite X ⊆ B such that the
set is monochromatic.

Definition
An ultrafilter u ∈ βB is said to be stable ordered union if for every colouring
c : [B]2 −→ 2 there exists an infinite ordered X ⊆ B such that FS(X) ∈ u and
[FS(X)]2< is monochromatic.
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Čech–Stone compactification/ultrafilters Milliken–Taylor ultrafilters > selective ultrafilters ×2

Milliken–Taylor is stronger than Ramsey ×2

Theorem (Blass–Hindman)

If there exists a stable ordered union ultrafilter, then there are two
non-isomorphic selective ultrafilters.

Questions
1 Does the existence of a strongly summable ultrafilter imply the existence

of a stable ordered union ultrafilter?
2 Does the existence of a strongly summable ultrafilter imply the existence

of a selective ultrafilter?
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Cardinal Characteristics of the Continuum

Theme 2: Cardinal Characteristics of the Continuum

A cardinal characteristic of the continuum is a cardinal which is
combinatorially defined, and which is (provably in ZFC) between ω1 and c.

Example

non(N ) = min{|X|
∣∣X ⊆ R ∧ µ∗(X) 6= 0},

note that ω1 ≤ non(N ) ≤ c.

Studying cardinal characteristics of the continuum is, in a sense, a way (the
only way that nowadays –after Gödel’s and Cohen’s results– makes sense) of
studying the Continuum Hypothesis, by investigating all of the complexity that
might inhabit the space between ω1 and c, should the CH fail.
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Cardinal Characteristics of the Continuum A cardinal characteristic associated to Ramsey’s theorem

A characteristic associated to Ramsey’s theorem

Definition

hom = min{|X |
∣∣(∀c : [ω]2 −→ 2)(∃X ∈X )([X]2 is monochromatic)}.

It is known that

hom = max{d, rσ}

(where d is the dominating number, and rσ is the σ-version of the reaping

number).
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Cardinal Characteristics of the Continuum A cardinal characteristic associated to Hindman’s theorem

Characteristics associated to
Hindman’s/Milliken–Taylor’s theorems

Definition
We define homnH to be the least cardinality of a family X , each of whose
elements is an infinite ordered X ⊆ B, such that for every c : [B]n −→ 2 there
exists an X ∈X such that [FS(X)]n< is monochromatic.

It is straightforward to show that we must have
hom1

H ≤ hom2
H ≤ · · · ≤ homnH ≤ homn+1

H ≤ · · · . Also, it is known that
max{d, r} ≤ hom1

H .

Theorem (F.-B.)

hom2
H = hom3

H = · · · = homnH = · · ·
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Cardinal Characteristics of the Continuum A host of unknown stuff about these invariants

The unknown

Therefore, there are fundamentally only two cardinal characteristics: hom1
H

and hom2
H (let’s rename them homH and homMT , respectively). The known

relationships are as follows (an arrow means a ZFC-provable inequality).

homMT

{{ $$
rσ

##

homH

yy ��
r d

In particular, it follows that homMT ≥ hom, so at least in the context of cardinal
characteristics of the continuum, the Milliken–Taylor theorem is stronger than
Ramsey’s theorem (duh!!!). However, how about Hindman’s theorem?
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Cardinal Characteristics of the Continuum A host of unknown stuff about these invariants

Some open questions

homMT

{{ $$
rσ

##

homH

yy ��
r d

Questions
1 Is it consistent that hom < homH or hom < homMT?

2 Is it consistent that homH < rσ? (this one is potentially very hard)
3 Is any of the two “downward-right” arrows reversible? (once again, this is

potentially an extremely hard problem)
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Uncountable cardinalities Ramsey’s theorem in higher cardinalities

Theme 3: Uncountable cardinalities

Theorem (Erdős–Rado)

For every infinite cardinal κ, there exists a sufficiently large λ (in fact, it
suffices to take λ = (2κ)+) such that for every colouring c : [λ]2 −→ 2 there
exists an X ⊆ λ with |X| = κ such that [X]2 is monochromatic.

Theorem
If an uncountable cardinal κ has the property that for every colouring
c : [κ]2 −→ 2 there exists an X ⊆ κ with |X| = κ and [X]2 monochromatic,
then κ is very, very large (or actually, not so large... technically, κ is said to be
a weakly compact cardinal).
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Uncountable cardinalities No uncountable FS-sets

Can we get analogous results for monochromatic
FS-sets?

Theorem (F.-B.)

Let G be any uncountable abelian group. Then there exists a colouring
c : G −→ 2 such that whenever X ⊆ G is uncountable, the set FS(X) is not
monochromatic.

Theorem (F.-B. and Rinot)

Let G be any uncountable abelian group. Then there exists a colouring
c : G −→ ω such that for every uncountable X ⊆ G, the set FS(X) is
panchromatic.
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Uncountable cardinalities No uncountable FS-sets

How badly does the uncountable version of Hindman’s
theorem fail?

Theorem (F.-B. and Rinot)

Let G be any uncountable abelian group. Then there exists a colouring
c : G −→ ω such that for every uncountable X ⊆ G, the set FS(X) is
panchromatic.

Can we do better? It turns out that the answer to this question is “yes and no”:

Theorem (F.B. and Rinot)
1 It is consistent with ZFC that for every uncountable abelian group G there

exists a colouring c : G −→ ω1 such that every uncountable X ⊆ G
satisfies that FS(X) is panchromatic.

2 Modulo large cardinals –extremely mild ones–, it is consistent with ZFC
that for every colouring c : R −→ ω1, there is an uncountable X ⊆ G such
that FS(X) only hits countably many colours.
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Uncountable cardinalities No uncountable FS-sets

It fails really badly...

Theorem (F.-B. and Rinot)

For many, many cardinals κ

(don’t ask!!!) it is the case that for every abelian
group G with |G| = κ, there exists a colouring c : G −→ κ such that every
X ⊆ G with |X| = κ must satisfy that FS(X) is panchromatic.

(It is consistent that these κ include all regular cardinals, and it is consistent
that c finds itself amongst these κ.)
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Uncountable cardinalities How about small FS-sets?

Many colours, small monochromatic sets

Theorem (Komjáth)

Given any cardinal κ and any n ∈ N, there exists a sufficiently large λ such
that for every colouring c : B(λ) −→ κ there are distinct x1, . . . , xn ∈ B(λ) such
that FS(x1, . . . , xn) is monochromatic.

Theorem (F.-B. and Lee)
1 Given any cardinal κ, there is a sufficiently large λ (slightly smaller than

Komjáth’s!) such that for every abelian group G of cardinality λ, it is the
case that for every c : G −→ κ there are x, y ∈ G such that
FS(x, y) = {x, y, x+ y} is monochromatic. Furthermore, our λ is optimal.

2 The “n = 2” in our item (1) above is also optimal. That is, there are
arbitrarily large abelian groups G such that there exists a c : G −→ ω
satisfying that for every x, y, z ∈ G, the set

FS(x, y, z) = {x, y, z, x+ y, y + z, x+ z, x+ y + z}

is not monochromatic.
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Given any cardinal κ and any n ∈ N, there exists a sufficiently large λ such
that for every colouring c : B(λ) −→ κ there are distinct x1, . . . , xn ∈ B(λ) such
that FS(x1, . . . , xn) is monochromatic.

Theorem (F.-B. and Lee)
1 Given any cardinal κ, there is a sufficiently large λ

(slightly smaller than
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Set theory without choice

Theme 4: Set theory without the Axiom of Choice

Recall that, in the theory ZF without assuming AC, there may be sets that are
infinite but Dedekind-finite: that is, sets X which, although not in bijection
with any n ∈ ω, satisfy that

1 There is no bijection between X and any of its proper subsets,
or equivalently,

2 every injective function : X −→ X must be surjective,
or equivalently,

3 there is no injective function : ω −→ X,
or equivalently,

4 X has no countable subsets.

In ZF, it is possible to thoroughly study the sheer variety of different infinite
Dedekind-finite sets that might exist. There is a notion of a finiteness class. The
smallest finiteness class is the class of all finite sets, and the largest finiteness class is
the class of all Dedekind-finite sets.
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Set theory without choice

Ramsey’s and Hindman’s theorems without choice

In ZFC (or even in something like ZF plus countable choice), every infinite set
must be Dedekind-infinite.

Therefore, in such a theory, it follows more or less trivially from the usual
Ramsey’s theorem (for ω) that whenever X is an infinite set, for every
c : [X]n −→ 2 there exists an infinite Y ⊆ X such that [Y ]n is
c-monochromatic,

and it also follows more or less trivially from the usual Hindman’s theorem (on
the Boolean group B = [ω]<ω) that whenever X is an infinite set, for every
c : [X]<ω −→ 2 there exists an infinite Y ⊆ [X]<ω such that FS(Y ) is
monochromatic. Furthermore, we can take such a Y to be pairwise disjoint.
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Set theory without choice New finiteness classes

Finiteness classes arising from Hindman’s theorem

Definition

A set X will be said to be H-infinite if for every colouring c : [X]<ω −→ 2,
there exists an infinite Y ⊆ [X]<ω such that FS(X) is monochromatic.

We
similarly define Hpwd-infinite if we can find such a Y to be pairwise disjoint,
and we write a further subscript n in either variation of the letter H if we can
only guarantee that the set

FSn(Y ) =

{∑
x∈F

x

∣∣∣∣F ⊆ Y ∧ 0 < |F | ≤ n

}

is monochromatic.

With these definitions, we immediately get the following implications:

fin +3 H2-fin +3

��

H3-fin +3

��

H4-fin +3

��

· · · +3 H-fin

��
Hpwd,2-fin +3 Hpwd,3-fin +3 Hpwd,4-fin +3 · · · +3 Hpwd-fin +3 D-fin.
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Set theory without choice New finiteness classes

An interesting collapse

fin +3 H2-fin +3
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Theorem (Brot, Cao, F.-B.)

For any set X, the following are equivalent:
1 X is H-finite,
2 the finite powerset [X]<ω of X is D-finite,
3 X is H4-finite,
4 X is Hpwd,2-finite.

Therefore, most of these notions of finiteness collapse and we are only left
with (at most) three of them: H-finite, H2-finite and H3-finite.
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Set theory without choice New finiteness classes

Finiteness classes arising from Hindman’s theorem

Our big diagram from the previous slide has collapsed to the following small
one:

finite +3 H2-finite +3 H3-finite +3 H-finite +3 D-finite

We know that the black arrows are not reversible in ZF. We still do not know if
the red arrow (from H3-finite to H-finite) is reversible. The following shows
that this question is a really hard one.

Theorem (Brot, Cao, F.-B.)

It is consistent with ZF that there exists an H-finite set X satisfying that:
for every colouring c : [X]<ω −→ 2
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Set theory without choice New finiteness classes

Finiteness classes arising from Ramsey’s theorem

Definition

A set X will be said to be Rn-finite if for every colouring c : [X]n −→ 2 there
exists an infinite Y ⊆ X such that [Y ]n is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any
implication whatsoever connecting the notions of Rn-finite for different n.
However,

Theorem (Brot, Cao, F.-B.)

Suppose that X is either amorphous or linearly orderable. Then the following
implications hold for X:

finite +3 R2-finite +3 R3-finite +3 · · · +3 D-finite
Furthermore, none of these arrows is reversible (and similar results where we
consider colourings with different numbers of colours).
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Set theory without choice Connection between Ramsey and a weak version of Hindman

A somewhat surprising connection

Theorem (Brot, Cao, F.-B.)

H2-finite implies R2-finite.

Therefore, we now have an instance where Ramsey’s theorem implies (a
weak version of) Hindman’s theorem. In fact, this is just the fact that Ramsey’s
theorem implies Schur’s theorem (i.e. Hindman’s for n = 2).
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Set theory without choice Connections between these new notions of finiteness and the old ones

Connections with the old notions of finiteness
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