Variations on a theme: Ramsey's and Hindman's theorem

 $\label{eq:constraint} \begin{array}{c} David J. \ Fernández-Bretón\\ \hline University of Michigan \ On the move\\ joint works with elements of the set \{ \varnothing, J. Brot, M. Cao, S. H. Lee, A. Rinot \} \end{array}$

10th BLAST conference University of Denver August 9, 2018

Ramsey and Hindman

• • • • • • •

Theorem

Proof.

D. Fernández

イロト イヨト イヨト イヨト

Theorem

In every party with at least 6 attendees, there are three of them that either mutually know each other or are mutually unknown to each other.

Proof.

D. Fernández

・ロト ・回ト ・ヨト ・ヨト

Theorem

Whenever we colour the edges of a complete graph with at least 6 vertices using two colours, there will necessarily be a monochromatic triangle.

Proof.

・ロト ・回ト ・ヨト ・ヨト

Theorem

Theorem

Theorem

Theorem

Theorem

Ramsey's theorem

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ramsey's theorem

Theorem

For every $n \in \mathbb{N}$ there exists an $R(n) \in \mathbb{N}$ such that for every coulouring $c : [R(n)]^2 \longrightarrow 2$ there exists an $X \subseteq R(n)$ with |X| = n such that $|c^{(n)}[X]^2| = 1$ (i.e. there is a monochromatic complete induced subgraph with n vertices).

Ramsey's theorem

Theorem

For every $n \in \mathbb{N}$ there exists an $R(n) \in \mathbb{N}$ such that for every coulouring $c : [R(n)]^2 \longrightarrow 2$ there exists an $X \subseteq R(n)$ with |X| = n such that $|c^{"}[X]^2| = 1$ (i.e. there is a monochromatic complete induced subgraph with n vertices).

Theorem

For every colouring $c : [\omega]^2 \longrightarrow 2$ there exists an infinite $X \subseteq \omega$ such that $[X]^2$ is monochromatic (i.e. there is an infinite monochromatic induced subgraph).

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Given an *X*, we denote by
$$FS(X) = \left\{ \sum_{x \in F} x \middle| F \in [X]^{<\omega} \setminus \{\emptyset\} \right\}.$$

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hindman's theorem

Given an *X*, we denote by
$$FS(X) = \left\{ \sum_{x \in F} x \middle| F \in [X]^{<\omega} \setminus \{\varnothing\} \right\}.$$

Theorem

For every colouring $c : \mathbb{N} \longrightarrow 2$, there exists an infinite $X \subseteq \mathbb{N}$ such that FS(X) is monochromatic.

Hindman's theorem

Given an
$$X$$
, we denote by $FS(X) = \left\{ \sum_{x \in F} x \middle| F \in [X]^{<\omega} \setminus \{\varnothing\} \right\}.$

Theorem

For every colouring $c : \mathbb{N} \longrightarrow 2$, there exists an infinite $X \subseteq \mathbb{N}$ such that FS(X) is monochromatic.

Theorem

For every infinite abelian group *G* and every colouring $c : G \longrightarrow 2$, there exists an infinite $X \subseteq G$ such that FS(X) is monochromatic.

イロト イヨト イヨト イヨト

Theme 1: The Čech–Stone compactification, aka ultrafilters

Theme 1: The Čech–Stone compactification, aka ultrafilters

Definition

An **ultrafilter** over a set *X* is a family $u \in \mathfrak{P}(\mathfrak{P}(X))$ satisfying:

 $\textcircled{} (\forall A,B\subseteq X)(A\cap B\in u \iff (A\in u \land B\in u)),$

$$(\forall A, B \subseteq X)(A \cup B \in u \iff (A \in u \lor B \in u)),$$

$$(\forall A \subseteq X) (A \in u \iff X \setminus A \notin u).$$

Theme 1: The Čech–Stone compactification, aka ultrafilters

Definition

An **ultrafilter** over a set *X* is a family $u \in \mathfrak{P}(\mathfrak{P}(X))$ satisfying:

$$\textcircled{} (\forall A,B\subseteq X)(A\cap B\in u\iff (A\in u\wedge B\in u)),$$

$$(\forall A, B \subseteq X)(A \cup B \in u \iff (A \in u \lor B \in u)),$$

$$(\forall A \subseteq X) (A \in u \iff X \setminus A \notin u).$$

Given a set *X*, thought of as a discrete topological space, the Čech–Stone compactification of *X* can be realized as the set βX of all ultrafilters over *X*, topologized by letting the sets

$$\{u \in \beta X \mid u \in A\}$$

be open, for all $A \subseteq X$.

D. Fernández

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

An ultrafilter $u \in \beta \omega \setminus \omega$ is said to be **selective** if for every colouring $c : [\omega]^2 \longrightarrow 2$ there exists an $A \in u$ such that $[A]^2$ is *c*-monochromatic.

・ロト ・回ト ・ヨト ・ヨト

Definition

An ultrafilter $u \in \beta \omega \setminus \omega$ is said to be **selective** if for every colouring $c : [\omega]^2 \longrightarrow 2$ there exists an $A \in u$ such that $[A]^2$ is *c*-monochromatic.

Selective ultrafilters turn out to be extremely important amongst ultrafilters. Their existence is independent of the ZFC axioms.

Definition

An ultrafilter $u \in \beta \omega \setminus \omega$ is said to be **selective** if for every colouring $c : [\omega]^2 \longrightarrow 2$ there exists an $A \in u$ such that $[A]^2$ is *c*-monochromatic.

Selective ultrafilters turn out to be extremely important amongst ultrafilters. Their existence is independent of the ZFC axioms.

Properties

- Selective ultrafilters are minimal in the Rudin-Keisler ordering,
- *u* is selective iff $\prod \omega/u$ has only one constellation (i.e. for any two nonstandard natural numbers N, M, there exists a standard f such that f(N) = M).

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

If G is an abelian group, an ultrafilter $u \in \beta G \setminus G$ is said to be **strongly summable** if for every colouring $c : G \longrightarrow 2$ there exists an X such that $FS(A) \in u$ and FS(A) is c-monochromatic.

Definition

If *G* is an abelian group, an ultrafilter $u \in \beta G \setminus G$ is said to be **strongly summable** if for every colouring $c : G \longrightarrow 2$ there exists an *X* such that $FS(A) \in u$ and FS(A) is *c*-monochromatic.

Strongly summable ultrafilters turn out to be extremely important when analyzing the algebraic structure of βG . Their existence is independent of the ZFC axioms.

(4月) トイヨト イヨト

Definition

If *G* is an abelian group, an ultrafilter $u \in \beta G \setminus G$ is said to be **strongly summable** if for every colouring $c : G \longrightarrow 2$ there exists an *X* such that $FS(A) \in u$ and FS(A) is *c*-monochromatic.

Strongly summable ultrafilters turn out to be extremely important when analyzing the algebraic structure of βG . Their existence is independent of the ZFC axioms.

Properties

1 They are idempotent (i.e. u + u = u).

2 They have the trivial sums property (that is, whenever u = v + w, there must be an x ∈ G such that {v, w} = {x + u, -x + u}).

・ロト ・回ト ・ヨト ・ヨト

Extremely important for us will be the Boolean group, realized as $([\omega]^{<\omega}, \triangle)$. We will denote it by \mathbb{B} .

Extremely important for us will be the Boolean group, realized as $([\omega]^{<\omega}, \triangle)$. We will denote it by \mathbb{B} .

Theorem (F.-B.)

If *G* is any infinite abelian group, and $u \in \beta G$ is strongly summable, then *u* is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Extremely important for us will be the Boolean group, realized as $([\omega]^{<\omega}, \triangle)$. We will denote it by \mathbb{B} .

Theorem (F.-B.)

If *G* is any infinite abelian group, and $u \in \beta G$ is strongly summable, then *u* is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group G is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B} .

Extremely important for us will be the Boolean group, realized as $([\omega]^{<\omega}, \Delta)$. We will denote it by \mathbb{B} .

Theorem (F.-B.)

If G is any infinite abelian group, and $u \in \beta G$ is strongly summable, then u is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group G is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B} .

Questions

Are strongly summable ultrafilters selective?

Extremely important for us will be the Boolean group, realized as $([\omega]^{<\omega}, \Delta)$. We will denote it by \mathbb{B} .

Theorem (F.-B.)

If G is any infinite abelian group, and $u \in \beta G$ is strongly summable, then u is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group G is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B} .

Questions

Are strongly summable ultrafilters selective? No.

Extremely important for us will be the Boolean group, realized as $([\omega]^{<\omega}, \triangle)$. We will denote it by \mathbb{B} .

Theorem (F.-B.)

If *G* is any infinite abelian group, and $u \in \beta G$ is strongly summable, then *u* is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group *G* is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B} .

Questions

- Are strongly summable ultrafilters selective? No.
- Obes the existence of a strongly summable ultrafilter imply the existence of a selective ultrafilter?

Extremely important for us will be the Boolean group, realized as $([\omega]^{<\omega}, \triangle)$. We will denote it by \mathbb{B} .

Theorem (F.-B.)

If *G* is any infinite abelian group, and $u \in \beta G$ is strongly summable, then *u* is additively isomorphic to some strongly summable $v \in \beta \mathbb{B}$.

Thus, in a sense, the group *G* is insubstantial for strongly summable ultrafilters; we can always assume that the relevant group is \mathbb{B} .

Questions

- Are strongly summable ultrafilters selective? No.
- Obes the existence of a strongly summable ultrafilter imply the existence of a selective ultrafilter?

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

(I)

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Theorem (Milliken–Taylor)

For every colouring $c : [\mathbb{B}]^2 \longrightarrow 2$, there exists an infinite $X \subseteq \mathbb{B}$ such that the set

 $[\mathrm{FS}(X)]^2 = \{ \langle x, y \rangle | x, y \in \mathrm{FS}(X) \}$

is monochromatic.

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Theorem (Milliken–Taylor)

For every colouring $c : [\mathbb{B}]^2 \longrightarrow 2$, there exists an infinite ordered $X \subseteq \mathbb{B}$ such that the set

 $[\mathrm{FS}(X)]^2 = \{ \langle x, y \rangle | x, y \in \mathrm{FS}(X) \}$

is monochromatic.

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Theorem (Milliken–Taylor)

For every colouring $c : [\mathbb{B}]^2 \longrightarrow 2$, there exists an infinite ordered $X \subseteq \mathbb{B}$ such that the set

 $[\mathrm{FS}(X)]_{<}^{2} = \{\langle x, y \rangle | x, y \in \mathrm{FS}(X) \text{ and } (\max(x) < \min(y) \lor \max(y) < \min(x)) \}$

is monochromatic.

Combining Ramsey's and Hindman's theorem, or a higher dimensional version of Hindman's theorem

Theorem (Milliken–Taylor)

For every colouring $c : [\mathbb{B}]^2 \longrightarrow 2$, there exists an infinite ordered $X \subseteq \mathbb{B}$ such that the set

 $[\mathrm{FS}(X)]_{<}^{2} = \{\langle x, y \rangle | x, y \in \mathrm{FS}(X) \text{ and } (\max(x) < \min(y) \lor \max(y) < \min(x)) \}$

is monochromatic.

Definition

An ultrafilter $u \in \beta \mathbb{B}$ is said to be **stable ordered union** if for every colouring $c : [\mathbb{B}]^2 \longrightarrow 2$ there exists an infinite ordered $X \subseteq \mathbb{B}$ such that $FS(X) \in u$ and $[FS(X)]_{\leq}^2$ is monochromatic.

Milliken–Taylor is stronger than Ramsey $\times 2$

э

Milliken–Taylor is stronger than Ramsey $\times 2$

Theorem (Blass–Hindman)

If there exists a stable ordered union ultrafilter, then there are two non-isomorphic selective ultrafilters.

Milliken–Taylor is stronger than Ramsey $\times 2$

Theorem (Blass–Hindman)

If there exists a stable ordered union ultrafilter, then there are two non-isomorphic selective ultrafilters.

Questions

- Does the existence of a strongly summable ultrafilter imply the existence of a stable ordered union ultrafilter?
- Obes the existence of a strongly summable ultrafilter imply the existence of a selective ultrafilter?

• □ ▶ • □ ▶ • □ ▶ • □ ▶

(D) (A) (A) (A)

A cardinal characteristic of the continuum is a cardinal which is combinatorially defined, and which is (provably in ZFC) between ω_1 and \mathfrak{c} .

A cardinal characteristic of the continuum is a cardinal which is combinatorially defined, and which is (provably in ZFC) between ω_1 and c.

Example

$$\operatorname{non}(\mathcal{N}) = \min\{|X| | X \subseteq \mathbb{R} \land \mu^*(X) \neq 0\},\$$

A cardinal characteristic of the continuum is a cardinal which is combinatorially defined, and which is (provably in ZFC) between ω_1 and \mathfrak{c} .

Example

$$\operatorname{non}(\mathcal{N}) = \min\{|X| | X \subseteq \mathbb{R} \land \mu^*(X) \neq 0\},\$$

note that $\omega_1 \leq \operatorname{non}(\mathcal{N}) \leq \mathfrak{c}$.

A cardinal characteristic of the continuum is a cardinal which is combinatorially defined, and which is (provably in ZFC) between ω_1 and \mathfrak{c} .

Example

$$\operatorname{non}(\mathcal{N}) = \min\{|X| | X \subseteq \mathbb{R} \land \mu^*(X) \neq 0\},\$$

note that $\omega_1 \leq \operatorname{non}(\mathcal{N}) \leq \mathfrak{c}$.

Studying cardinal characteristics of the continuum is, in a sense, a way (the only way that nowadays –after Gödel's and Cohen's results– makes sense) of studying the Continuum Hypothesis, by investigating all of the complexity that might inhabit the space between ω_1 and \mathfrak{c} , should the CH fail.

Definition

 $\mathfrak{hom} = \min\{|\mathscr{X}| | (\forall c : [\omega]^2 \longrightarrow 2) (\exists X \in \mathscr{X})([X]^2 \text{ is monochromatic}) \}.$

Definition

 $\mathfrak{hom} = \min\{|\mathscr{X}| | (\forall c : [\omega]^2 \longrightarrow 2) (\exists X \in \mathscr{X})([X]^2 \text{ is monochromatic}) \}.$

It is known that

・ロン ・回 と ・ 回 と ・ 回 と

Definition

 $\mathfrak{hom} = \min\{|\mathscr{X}| | (\forall c : [\omega]^2 \longrightarrow 2) (\exists X \in \mathscr{X})([X]^2 \text{ is monochromatic}) \}.$

It is known that

 $\mathfrak{hom}=\max\{\mathfrak{d},\mathfrak{r}_\sigma\}$

D. Fernández

Ramsey and Hindman

BLAST 2018, Denver 12 / 28

Definition

 $\mathfrak{hom} = \min\{|\mathscr{X}| \big| (\forall c : [\omega]^2 \longrightarrow 2) (\exists X \in \mathscr{X}) ([X]^2 \text{ is monochromatic}) \}.$

It is known that

 $\mathfrak{hom}=\max\{\mathfrak{d},\mathfrak{r}_\sigma\}$

(where \mathfrak{d} is the dominating number, and \mathfrak{r}_{σ} is the σ -version of the reaping number).

Characteristics associated to Hindman's/Milliken–Taylor's theorems

Definition

We define \mathfrak{hom}_H^n to be the least cardinality of a family \mathscr{X} , each of whose elements is an infinite ordered $X \subseteq \mathbb{B}$, such that for every $c : [\mathbb{B}]^n \longrightarrow 2$ there exists an $X \in \mathscr{X}$ such that $[FS(X)]_{<}^n$ is monochromatic.

Characteristics associated to Hindman's/Milliken–Taylor's theorems

Definition

We define \mathfrak{hom}_H^n to be the least cardinality of a family \mathscr{X} , each of whose elements is an infinite ordered $X \subseteq \mathbb{B}$, such that for every $c : [\mathbb{B}]^n \longrightarrow 2$ there exists an $X \in \mathscr{X}$ such that $[FS(X)]_{<}^n$ is monochromatic.

It is straightforward to show that we must have $\mathfrak{hom}_{H}^{1} \leq \mathfrak{hom}_{H}^{2} \leq \cdots \leq \mathfrak{hom}_{H}^{n} \leq \mathfrak{hom}_{H}^{n+1} \leq \cdots$. Also, it is known that $\max{\{\mathfrak{d},\mathfrak{r}\}} \leq \mathfrak{hom}_{H}^{1}$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Characteristics associated to Hindman's/Milliken–Taylor's theorems

Definition

We define \mathfrak{hom}_H^n to be the least cardinality of a family \mathscr{X} , each of whose elements is an infinite ordered $X \subseteq \mathbb{B}$, such that for every $c : [\mathbb{B}]^n \longrightarrow 2$ there exists an $X \in \mathscr{X}$ such that $[FS(X)]_{<}^n$ is monochromatic.

It is straightforward to show that we must have $\mathfrak{hom}_{H}^{1} \leq \mathfrak{hom}_{H}^{2} \leq \cdots \leq \mathfrak{hom}_{H}^{n} \leq \mathfrak{hom}_{H}^{n+1} \leq \cdots$. Also, it is known that $\max{\{\mathfrak{d},\mathfrak{r}\}} \leq \mathfrak{hom}_{H}^{1}$.

Theorem (F.-B.)

$$\mathfrak{hom}_H^2 = \mathfrak{hom}_H^3 = \cdots = \mathfrak{hom}_H^n = \cdots$$

Therefore, there are fundamentally only two cardinal characteristics: \mathfrak{hom}_{H}^{1} and \mathfrak{hom}_{H}^{2} (let's rename them \mathfrak{hom}_{H} and \mathfrak{hom}_{MT} , respectively). The known relationships are as follows (an arrow means a ZFC-provable inequality).

Therefore, there are fundamentally only two cardinal characteristics: \mathfrak{hom}_{H}^{1} and \mathfrak{hom}_{H}^{2} (let's rename them \mathfrak{hom}_{H} and \mathfrak{hom}_{MT} , respectively). The known relationships are as follows (an arrow means a ZFC-provable inequality).

Therefore, there are fundamentally only two cardinal characteristics: \mathfrak{hom}_{H}^{1} and \mathfrak{hom}_{H}^{2} (let's rename them \mathfrak{hom}_{H} and \mathfrak{hom}_{MT} , respectively). The known relationships are as follows (an arrow means a ZFC-provable inequality).

In particular, it follows that $\mathfrak{hom}_{MT} \ge \mathfrak{hom}$, so at least in the context of cardinal characteristics of the continuum, the Milliken–Taylor theorem is stronger than Ramsey's theorem (duh!!!).

Therefore, there are fundamentally only two cardinal characteristics: \mathfrak{hom}_{H}^{1} and \mathfrak{hom}_{H}^{2} (let's rename them \mathfrak{hom}_{H} and \mathfrak{hom}_{MT} , respectively). The known relationships are as follows (an arrow means a ZFC-provable inequality).

In particular, it follows that $\mathfrak{hom}_{MT} \ge \mathfrak{hom}$, so at least in the context of cardinal characteristics of the continuum, the Milliken–Taylor theorem is stronger than Ramsey's theorem (duh!!!). However, how about Hindman's theorem?

Questions

• Is it consistent that $hom < hom_H$ or $hom < hom_{MT}$?

Questions

- Is it consistent that $hom < hom_H$ or $hom < hom_{MT}$?
- 2 Is it consistent that $\mathfrak{hom}_H < \mathfrak{r}_{\sigma}$?

Questions

- Is it consistent that $hom < hom_H$ or $hom < hom_{MT}$?
- Is it consistent that $\mathfrak{hom}_H < \mathfrak{r}_{\sigma}$? (this one is potentially very hard)

Questions

- Is it consistent that $hom < hom_H$ or $hom < hom_{MT}$?
- 2 Is it consistent that $\mathfrak{hom}_H < \mathfrak{r}_{\sigma}$? (this one is potentially very hard)
- Is any of the two "downward-right" arrows reversible?

< (四)< (四)< (四)< (四)< (四)< (1)< (1)</

Questions

- Is it consistent that $hom < hom_H$ or $hom < hom_{MT}$?
- 2 Is it consistent that $\mathfrak{hom}_H < \mathfrak{r}_{\sigma}$? (this one is potentially very hard)
- Is any of the two "downward-right" arrows reversible? (once again, this is potentially an extremely hard problem)

Theme 3: Uncountable cardinalities

Theme 3: Uncountable cardinalities

Theorem (Erdős-Rado)

For every infinite cardinal κ , there exists a sufficiently large λ (in fact, it suffices to take $\lambda = (2^{\kappa})^+$) such that for every colouring $c : [\lambda]^2 \longrightarrow 2$ there exists an $X \subseteq \lambda$ with $|X| = \kappa$ such that $[X]^2$ is monochromatic.

Theme 3: Uncountable cardinalities

Theorem (Erdős-Rado)

For every infinite cardinal κ , there exists a sufficiently large λ (in fact, it suffices to take $\lambda = (2^{\kappa})^+$) such that for every colouring $c : [\lambda]^2 \longrightarrow 2$ there exists an $X \subseteq \lambda$ with $|X| = \kappa$ such that $[X]^2$ is monochromatic.

Theorem

If an uncountable cardinal κ has the property that for every colouring $c : [\kappa]^2 \longrightarrow 2$ there exists an $X \subseteq \kappa$ with $|X| = \kappa$ and $[X]^2$ monochromatic, then κ is very, very large (or actually, not so large... technically, κ is said to be a **weakly compact cardinal**).

Can we get analogous results for monochromatic $\operatorname{FS}\operatorname{\mathsf{-sets}}\nolimits$

э

Can we get analogous results for monochromatic $\operatorname{FS}\operatorname{\mathsf{-sets}}\nolimits$

Theorem (F.-B.)

Let *G* be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, the set FS(X) is not monochromatic.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Can we get analogous results for monochromatic $\operatorname{FS}\operatorname{\mathsf{-sets}}\nolimits$

Theorem (F.-B.)

Let *G* be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow 2$ such that whenever $X \subseteq G$ is uncountable, the set FS(X) is not monochromatic.

Theorem (F.-B. and Rinot)

Let *G* be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set FS(X) is **panchromatic**.

・ロト ・回ト ・ヨト ・ヨト … ヨ

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)

Let *G* be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set FS(X) is panchromatic.

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)

Let *G* be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set FS(X) is panchromatic.

Can we do better?

• □ ▶ • □ ▶ • □ ▶ • □ ▶

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)

Let *G* be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set FS(X) is panchromatic.

Can we do better? It turns out that the answer to this question is "yes and no":

Theorem (F.B. and Rinot)

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)

Let *G* be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set FS(X) is panchromatic.

Can we do better? It turns out that the answer to this question is "yes and no":

Theorem (F.B. and Rinot)

It is consistent with ZFC that for every uncountable abelian group G there exists a colouring c : G → ω₁ such that every uncountable X ⊆ G satisfies that FS(X) is panchromatic.

< 47 ▶

How badly does the uncountable version of Hindman's theorem fail?

Theorem (F.-B. and Rinot)

Let *G* be any uncountable abelian group. Then there exists a colouring $c: G \longrightarrow \omega$ such that for every uncountable $X \subseteq G$, the set FS(X) is panchromatic.

Can we do better? It turns out that the answer to this question is "yes and no":

Theorem (F.B. and Rinot)

It is consistent with ZFC that for every uncountable abelian group G there exists a colouring c : G → ω₁ such that every uncountable X ⊆ G satisfies that FS(X) is panchromatic.

Solution C = C = C = C = C (C = C = C = C = C = C = C) Modulo large cardinals –extremely mild ones–, it is consistent with ZFC that for every colouring $c : \mathbb{R} \longrightarrow \omega_1$, there is an uncountable $X \subseteq G$ such that FS(X) only hits countably many colours.

()

ヘロト ヘヨト ヘヨト

Theorem (F.-B. and Rinot)

For many, many cardinals κ

D. Fernández

Ramsey and Hindman

BLAST 2018, Denver 19 / 28

・ロト ・回ト ・ヨト ・ヨト

Theorem (F.-B. and Rinot)

For many, many cardinals κ (don't ask!!!)

・ロト ・回ト ・ヨト ・ヨト

Theorem (F.-B. and Rinot)

For many, many cardinals κ (don't ask!!!) it is the case that for every abelian group G with $|G| = \kappa$, there exists a colouring $c : G \longrightarrow \kappa$ such that every $X \subseteq G$ with $|X| = \kappa$ must satisfy that FS(X) is panchromatic.

Theorem (F.-B. and Rinot)

For many, many cardinals κ (don't ask!!!) it is the case that for every abelian group *G* with $|G| = \kappa$, there exists a colouring $c : G \longrightarrow \kappa$ such that every $X \subseteq G$ with $|X| = \kappa$ must satisfy that FS(X) is panchromatic.

(It is consistent that these κ include all regular cardinals, and it is consistent that c finds itself amongst these κ .)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

・ロト ・回ト ・ヨト ・ヨト

Theorem (Komjáth)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c : \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_1, \ldots, x_n \in \mathbb{B}(\lambda)$ such that $FS(x_1, \ldots, x_n)$ is monochromatic.

イロト イポト イヨト イヨト 二日

Theorem (Komjáth)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c : \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_1, \ldots, x_n \in \mathbb{B}(\lambda)$ such that $FS(x_1, \ldots, x_n)$ is monochromatic.

Theorem (F.-B. and Lee)

Theorem (Komjáth)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c : \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_1, \ldots, x_n \in \mathbb{B}(\lambda)$ such that $FS(x_1, \ldots, x_n)$ is monochromatic.

Theorem (F.-B. and Lee)

ullet Given any cardinal κ , there is a sufficiently large λ

Theorem (Komjáth)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c : \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_1, \ldots, x_n \in \mathbb{B}(\lambda)$ such that $FS(x_1, \ldots, x_n)$ is monochromatic.

Theorem (F.-B. and Lee)

Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!)

Theorem (Komjáth)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c : \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_1, \ldots, x_n \in \mathbb{B}(\lambda)$ such that $FS(x_1, \ldots, x_n)$ is monochromatic.

Theorem (F.-B. and Lee)

Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!) such that for every abelian group G of cardinality λ, it is the case that for every c : G → κ there are x, y ∈ G such that FS(x, y) = {x, y, x + y} is monochromatic.

Theorem (Komjáth)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c : \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_1, \ldots, x_n \in \mathbb{B}(\lambda)$ such that $FS(x_1, \ldots, x_n)$ is monochromatic.

Theorem (F.-B. and Lee)

Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!) such that for every abelian group G of cardinality λ, it is the case that for every c : G → κ there are x, y ∈ G such that FS(x, y) = {x, y, x + y} is monochromatic. Furthermore, our λ is optimal.

Theorem (Komjáth)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c : \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_1, \ldots, x_n \in \mathbb{B}(\lambda)$ such that $FS(x_1, \ldots, x_n)$ is monochromatic.

Theorem (F.-B. and Lee)

- Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!) such that for every abelian group G of cardinality λ, it is the case that for every c : G → κ there are x, y ∈ G such that FS(x, y) = {x, y, x + y} is monochromatic. Furthermore, our λ is optimal.
- 2 The "n = 2" in our item (1) above is also optimal.

Theorem (Komjáth)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ such that for every colouring $c : \mathbb{B}(\lambda) \longrightarrow \kappa$ there are distinct $x_1, \ldots, x_n \in \mathbb{B}(\lambda)$ such that $FS(x_1, \ldots, x_n)$ is monochromatic.

Theorem (F.-B. and Lee)

- Given any cardinal κ, there is a sufficiently large λ (slightly smaller than Komjáth's!) such that for every abelian group G of cardinality λ, it is the case that for every c : G → κ there are x, y ∈ G such that FS(x, y) = {x, y, x + y} is monochromatic. Furthermore, our λ is optimal.
- If the "n = 2" in our item (1) above is also optimal. That is, there are arbitrarily large abelian groups G such that there exists a c : G → w satisfying that for every x, y, z ∈ G, the set

$$FS(x, y, z) = \{x, y, z, x + y, y + z, x + z, x + y + z\}$$

is not monochromatic.

Set theory without choice

Theme 4: Set theory without the Axiom of Choice

D. Fernández

Ramsey and Hindman

BLAST 2018, Denver 21 / 28

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**:

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

There is no bijection between X and any of its proper subsets,

(日)

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

There is no bijection between X and any of its proper subsets, or equivalently,

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

- There is no bijection between X and any of its proper subsets, or equivalently,
- 2 every injective function : $X \longrightarrow X$ must be surjective,

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

- There is no bijection between X and any of its proper subsets, or equivalently,
- every injective function : X → X must be surjective, or equivalently,

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

- There is no bijection between X and any of its proper subsets, or equivalently,
- every injective function : X → X must be surjective, or equivalently,
- \bigcirc there is no injective function : $\omega \longrightarrow X$,

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

- There is no bijection between X and any of its proper subsets, or equivalently,
- every injective function : X → X must be surjective, or equivalently,
- 3 there is no injective function : $\omega \longrightarrow X$, or equivalently,

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

- There is no bijection between X and any of its proper subsets, or equivalently,
- every injective function : X → X must be surjective, or equivalently,
- 3 there is no injective function : ω → X, or equivalently,
- \bigcirc X has no countable subsets.

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

- There is no bijection between X and any of its proper subsets, or equivalently,
- every injective function : X → X must be surjective, or equivalently,
- Ithere is no injective function : ω → X, or equivalently,
- \bigcirc X has no countable subsets.

In ZF, it is possible to thoroughly study the sheer variety of different infinite Dedekind-finite sets that might exist.

Recall that, in the theory ZF without assuming AC, there may be sets that are infinite but **Dedekind-finite**: that is, sets X which, although not in bijection with any $n \in \omega$, satisfy that

- There is no bijection between X and any of its proper subsets, or equivalently,
- every injective function : X → X must be surjective, or equivalently,
- Ithere is no injective function : ω → X, or equivalently,
- \bigcirc X has no countable subsets.

In ZF, it is possible to thoroughly study the sheer variety of different infinite Dedekind-finite sets that might exist. There is a notion of a **finiteness class**. The smallest finiteness class is the class of all finite sets, and the largest finiteness class is the class of all Dedekind-finite sets.

In ZFC (or even in something like ZF plus countable choice), every infinite set must be Dedekind-infinite.

In ZFC (or even in something like ZF plus countable choice), every infinite set must be Dedekind-infinite.

Therefore, in such a theory, it follows more or less trivially from the usual Ramsey's theorem (for ω) that whenever X is an infinite set, for every $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is c-monochromatic,

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

In ZFC (or even in something like ZF plus countable choice), every infinite set must be Dedekind-infinite.

Therefore, in such a theory, it follows more or less trivially from the usual Ramsey's theorem (for ω) that whenever X is an infinite set, for every $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is c-monochromatic,

and it also follows more or less trivially from the usual Hindman's theorem (on the Boolean group $\mathbb{B} = [\omega]^{<\omega}$) that whenever X is an infinite set, for every $c: [X]^{<\omega} \longrightarrow 2$ there exists an infinite $Y \subseteq [X]^{<\omega}$ such that FS(Y) is monochromatic.

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

In ZFC (or even in something like ZF plus countable choice), every infinite set must be Dedekind-infinite.

Therefore, in such a theory, it follows more or less trivially from the usual Ramsey's theorem (for ω) that whenever X is an infinite set, for every $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is c-monochromatic,

and it also follows more or less trivially from the usual Hindman's theorem (on the Boolean group $\mathbb{B} = [\omega]^{<\omega}$) that whenever X is an infinite set, for every $c: [X]^{<\omega} \longrightarrow 2$ there exists an infinite $Y \subseteq [X]^{<\omega}$ such that FS(Y) is monochromatic. Furthermore, we can take such a Y to be pairwise disjoint.

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

New finiteness classes

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be H-infinite if for every colouring $c: [X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq [X]^{<\omega}$ such that FS(X) is monochromatic.

・ロト ・回ト ・ヨト ・ヨト

New finiteness classes

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be H-infinite if for every colouring $c: [X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq [X]^{<\omega}$ such that FS(X) is monochromatic. We similarly define H_{pwd} -infinite if we can find such a Y to be pairwise disjoint,

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be *H*-infinite if for every colouring $c : [X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq [X]^{<\omega}$ such that FS(X) is monochromatic. We similarly define H_{pwd} -infinite if we can find such a Y to be pairwise disjoint, and we write a further subscript *n* in either variation of the letter *H* if we can only guarantee that the set

$$FS_n(Y) = \left\{ \sum_{x \in F} x \middle| F \subseteq Y \land 0 < |F| \le n \right\}$$

is monochromatic.

Finiteness classes arising from Hindman's theorem

Definition

A set X will be said to be *H*-infinite if for every colouring $c : [X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq [X]^{<\omega}$ such that FS(X) is monochromatic. We similarly define H_{pwd} -infinite if we can find such a Y to be pairwise disjoint, and we write a further subscript *n* in either variation of the letter *H* if we can only guarantee that the set

$$FS_n(Y) = \left\{ \sum_{x \in F} x \middle| F \subseteq Y \land 0 < |F| \le n \right\}$$

is monochromatic.

With these definitions, we immediately get the following implications:

Definition

A set X will be said to be *H*-infinite if for every colouring $c : [X]^{<\omega} \longrightarrow 2$, there exists an infinite $Y \subseteq [X]^{<\omega}$ such that FS(X) is monochromatic. We similarly define H_{pwd} -infinite if we can find such a Y to be pairwise disjoint, and we write a further subscript *n* in either variation of the letter *H* if we can only guarantee that the set

$$FS_n(Y) = \left\{ \sum_{x \in F} x \middle| F \subseteq Y \land 0 < |F| \le n \right\}$$

is monochromatic.

With these definitions, we immediately get the following implications:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Theorem (Brot, Cao, F.-B.)

For any set X, the following are equivalent:

D. Fernández

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Theorem (Brot, Cao, F.-B.)

For any set X, the following are equivalent:

X is H-finite,

・ロト ・回ト ・ヨト ・ヨト … ヨ

Theorem (Brot, Cao, F.-B.)

For any set X, the following are equivalent:

- X is H-finite,
- **2** the finite powerset $[X]^{<\omega}$ of X is D-finite,

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Theorem (Brot, Cao, F.-B.)

For any set X, the following are equivalent:

- X is H-finite,
- **2** the finite powerset $[X]^{<\omega}$ of X is D-finite,
- \bigcirc X is H_4 -finite,

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Theorem (Brot, Cao, F.-B.)

For any set X, the following are equivalent:

- X is H-finite,
- **2** the finite powerset $[X]^{<\omega}$ of X is D-finite,
- \bigcirc X is H_4 -finite,
- X is $H_{pwd,2}$ -finite.

Theorem (Brot, Cao, F.-B.)

For any set X, the following are equivalent:

- X is H-finite,
- **2** the finite powerset $[X]^{<\omega}$ of X is D-finite,
- \bigcirc X is H_4 -finite,
- X is $H_{pwd,2}$ -finite.

Therefore, most of these notions of finiteness collapse and we are only left with (at most) three of them: H-finite, H_2 -finite and H_3 -finite.

D. Fernández

Ramsey and Hindman

BLAST 2018, Denver 24 / 28

・ロト ・回ト ・ヨト ・ヨト … ヨ

Our big diagram from the previous slide has collapsed to the following small one:

finite \Longrightarrow H_2 -finite \Longrightarrow H_3 -finite \Longrightarrow H-finite \Longrightarrow D-finite

Our big diagram from the previous slide has collapsed to the following small one:

finite \implies H_2 -finite \implies H_3 -finite \implies H-finite \implies D-finite \implies D-finite We know that the black arrows are not reversible in ZF.

Our big diagram from the previous slide has collapsed to the following small one:

finite \implies H_2 -finite \implies H_3 -finite \implies H-finite \implies D-finite We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_3 -finite to H-finite) is reversible.

Our big diagram from the previous slide has collapsed to the following small one:

finite $\implies H_2$ -finite $\implies H_3$ -finite $\implies H$ -finite $\implies D$ -finite We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_3 -finite to H-finite) is reversible. The following shows that this question is a really hard one.

```
Theorem (Brot, Cao, F.-B.)
```

Our big diagram from the previous slide has collapsed to the following small one:

finite $\implies H_2$ -finite $\implies H_3$ -finite $\implies H$ -finite $\implies D$ -finite We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_3 -finite to H-finite) is reversible. The following shows that this question is a really hard one.

Theorem (Brot, Cao, F.-B.)

It is consistent with ZF that there exists an *H*-finite set *X* satisfying that:

Our big diagram from the previous slide has collapsed to the following small one:

finite \implies H_2 -finite \implies H_3 -finite \implies H-finite \implies D-finite We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_3 -finite to H-finite) is reversible. The following shows that this question is a really hard one.

Theorem (Brot, Cao, F.-B.)

It is consistent with ZF that there exists an *H*-finite set *X* satisfying that: for every colouring $c: [X]^{<\omega} \longrightarrow 2$

there exists an infinite $Y \subseteq [X]^{<\omega}$ such that $FS_3(Y)$ is monochromatic.

Our big diagram from the previous slide has collapsed to the following small one:

finite \implies H_2 -finite \implies H_3 -finite \implies H-finite \implies D-finite We know that the black arrows are not reversible in ZF. We still do not know if the red arrow (from H_3 -finite to H-finite) is reversible. The following shows that this question is a really hard one.

Theorem (Brot, Cao, F.-B.)

It is consistent with ZF that there exists an *H*-finite set *X* satisfying that: for every colouring $c : [X]^{\leq \omega} \longrightarrow 2$ such that for some $g : \omega \longrightarrow 2$ the following diagram commutes

there exists an infinite $Y \subseteq [X]^{<\omega}$ such that $FS_3(Y)$ is monochromatic.

New finiteness classes

Finiteness classes arising from Ramsey's theorem

Definition

A set X will be said to be R^n -finite if for every colouring $c: [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is monochromatic.

Definition

A set X will be said to be R^n -finite if for every colouring $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of R^n -finite for different n.

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Definition

A set X will be said to be R^n -finite if for every colouring $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of \mathbb{R}^n -finite for different n. However,

Theorem (Brot, Cao, F.-B.)

Definition

A set X will be said to be R^n -finite if for every colouring $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of \mathbb{R}^n -finite for different n. However,

Theorem (Brot, Cao, F.-B.)

Suppose that *X* is either amorphous or linearly orderable. Then the following implications hold for *X*:

Definition

A set X will be said to be \mathbb{R}^n -finite if for every colouring $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of \mathbb{R}^n -finite for different n. However,

Theorem (Brot, Cao, F.-B.)

Suppose that *X* is either amorphous or linearly orderable. Then the following implications hold for *X*:

finite \Longrightarrow R^2 -finite \Longrightarrow R^3 -finite \Longrightarrow \cdots \Longrightarrow D-finite

Definition

A set X will be said to be R^n -finite if for every colouring $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of \mathbb{R}^n -finite for different n. However,

Theorem (Brot, Cao, F.-B.)

Suppose that *X* is either amorphous or linearly orderable. Then the following implications hold for *X*:

finite $\implies R^2$ -finite $\implies R^3$ -finite $\implies \cdots \implies D$ -finite Furthermore, none of these arrows is reversible

Definition

A set X will be said to be R^n -finite if for every colouring $c : [X]^n \longrightarrow 2$ there exists an infinite $Y \subseteq X$ such that $[Y]^n$ is monochromatic.

In ZF only, and for arbitrary sets X, we have not been able to prove any implication whatsoever connecting the notions of \mathbb{R}^n -finite for different n. However,

Theorem (Brot, Cao, F.-B.)

Suppose that *X* is either amorphous or linearly orderable. Then the following implications hold for *X*:

finite $\implies R^2$ -finite $\implies R^3$ -finite $\implies \cdots \implies D$ -finite Furthermore, none of these arrows is reversible (and similar results where we consider colourings with different numbers of colours).

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

э

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Brot, Cao, F.-B.)

 H_2 -finite implies R^2 -finite.

Theorem (Brot, Cao, F.-B.)

 H_2 -finite implies R^2 -finite.

Therefore, we now have an instance where Ramsey's theorem implies (a weak version of) Hindman's theorem.

D. Fernández

Ramsey and Hindman

BLAST 2018, Denver 27 / 28

Theorem (Brot, Cao, F.-B.)

 H_2 -finite implies R^2 -finite.

Therefore, we now have an instance where Ramsey's theorem implies (a weak version of) Hindman's theorem. In fact, this is just the fact that Ramsey's theorem implies Schur's theorem (i.e. Hindman's for n = 2).

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Connections with the old notions of finiteness

