Algebraic Ramsey-Theoretic Statements with an Uncountable Flavour

David Fernández-Bretón

(various joint works with elements of the set $\{\varnothing$, Assaf Rinot, 이성협 $\}$)
djfernan@umich.edu
http://www-personal.umich.edu/~djfernan

Department of Mathematics,
University of Michigan

Second Pan Pacific International Conference on Topology and Applications

부산, 대한민국, November 14, 2017

Theorem

In every party with at least six attendees, there will either be three who mutually know each other, or three who do not know each other.

Theorem

In every party with at least six attendees, there will either be three who mutually know each other, or three who do not know each other.

That is, if we colour the edges of a complete graph with at least six vertices using two colours, there will always be a monochromatic triangle.

Theorem

In every party with at least six attendees, there will either be three who mutually know each other, or three who do not know each other.

That is, if we colour the edges of a complete graph with at least six vertices using two colours, there will always be a monochromatic triangle.

That is,

$$
6 \rightarrow(3)_{2}^{2}
$$

Theorem

In every party with at least six attendees, there will either be three who mutually know each other, or three who do not know each other.

That is, if we colour the edges of a complete graph with at least six vertices using two colours, there will always be a monochromatic triangle.

That is,

$$
6 \rightarrow(3)_{2}^{2} .
$$

Ramsey theoretic statements are always of the form "however you colour a sufficiently large structure, there will always be monochromatic substructures of some prescribed size".

Theorem (Schur, 1912)

Whenever we colour the set of natural numbers \mathbb{N} with finitely many colours, there will be two elements x, y such that the set $\{x, y, x+y\}$ is monochromatic.

Theorem (Schur, 1912)

Whenever we colour the set of natural numbers \mathbb{N} with finitely many colours, there will be two elements x, y such that the set $\{x, y, x+y\}$ is monochromatic.

Theorem (van der Waerden, 1927)

For every finite colouring of \mathbb{N} and every $k<\omega$ there are two elements a, b such that the set $\{a, a+b, a+2 b, \ldots, a+k b\}$ is monochromatic.

Theorem (Schur, 1912)

Whenever we colour the set of natural numbers \mathbb{N} with finitely many colours, there will be two elements x, y such that the set $\{x, y, x+y\}$ is monochromatic.

Theorem (van der Waerden, 1927)

For every finite colouring of \mathbb{N} and every $k<\omega$ there are two elements a, b such that the set $\{a, a+b, a+2 b, \ldots, a+k b\}$ is monochromatic.

Theorem (Hindman, 1974)

For every finite colouring of \mathbb{N} there exists an infinite set $X \subseteq \mathbb{N}$ such that the set

$$
\mathrm{FS}(X)=\left\{x_{1}+\cdots+x_{n} \mid n \in \mathbb{N} \text { and } x_{1}, \ldots, x_{n} \in X \text { are distinct }\right\}
$$

(the set of finite sums of elements of X) is monochromatic.

Definition

Let S be a commutative semigroup and let θ, λ be two cardinal numbers. The symbol $S \rightarrow(\lambda)_{\theta}^{\mathrm{FS}}$ will be used to denote the following statement: Whenever we colour the semigroup S with θ colours, there will be a set $X \subseteq S$ with $|X|=\lambda$ such that $\mathrm{FS}(X)$ is monochromatic.

Definition

Let S be a commutative semigroup and let θ, λ be two cardinal numbers. The symbol $S \rightarrow(\lambda)_{\theta}^{\mathrm{FS}}$ will be used to denote the following statement: Whenever we colour the semigroup S with θ colours, there will be a set $X \subseteq S$ with $|X|=\lambda$ such that $\mathrm{FS}(X)$ is monochromatic.

Thus Hindman's 1974 theorem from the previous slide simply asserts that $\mathbb{N} \rightarrow\left(\aleph_{0}\right)_{n}^{\mathrm{FS}}$ for every finite n. In fact, utilizing the tools from algebra in the Cech-Stone compactification one can prove the following.

Definition

Let S be a commutative semigroup and let θ, λ be two cardinal numbers. The symbol $S \rightarrow(\lambda)_{\theta}^{\mathrm{FS}}$ will be used to denote the following statement: Whenever we colour the semigroup S with θ colours, there will be a set $X \subseteq S$ with $|X|=\lambda$ such that $\mathrm{FS}(X)$ is monochromatic.

Thus Hindman's 1974 theorem from the previous slide simply asserts that $\mathbb{N} \rightarrow\left(\aleph_{0}\right)_{n}^{\mathrm{FS}}$ for every finite n. In fact, utilizing the tools from algebra in the Čech-Stone compactification one can prove the following.

Theorem (Galvin-Glazer-Hindman)

Let G be any infinite abelian group. Then $G \rightarrow\left(\aleph_{0}\right)_{n}^{\mathrm{FS}}$ for every finite n.

Theorem (Galvin-Glazer-Hindman)

Let G be any infinite abelian group. Then $G \rightarrow\left(\aleph_{0}\right)_{n}^{\mathrm{FS}}$ for every finite n.

It is natural to ask ourselves whether it is possible to play with the parameters θ, λ in the statement $G \rightarrow(\lambda)_{\theta}^{\mathrm{FS}}$. In other words, try out an infinite number of colours, or try to increase the size of the monochromatic FS-set.

Theorem (Galvin-Glazer-Hindman)

Let G be any infinite abelian group. Then $G \rightarrow\left(\aleph_{0}\right)_{n}^{\mathrm{FS}}$ for every finite n.

It is natural to ask ourselves whether it is possible to play with the parameters θ, λ in the statement $G \rightarrow(\lambda)_{\theta}^{\mathrm{FS}}$. In other words, try out an infinite number of colours, or try to increase the size of the monochromatic FS-set.

Proposition

If G is any infinite abelian group, then $G \nrightarrow\left(\aleph_{0}\right)_{\aleph_{0}}^{\mathrm{FS}}$.

Theorem (F.B., 2015)
Let G be any uncountable abelian group. Then $G \nrightarrow\left(\aleph_{1}\right)_{2}^{\mathrm{FS}}$.

Theorem (F.B., 2015)

Let G be any uncountable abelian group. Then $G \nrightarrow\left(\aleph_{1}\right)_{2}^{\mathrm{FS}}$.

Definition

Once again, S is a commutative semigroup and θ, λ are cardinals. The symbol $S \rightarrow(\lambda)_{\theta}^{\mathrm{FS}}$ denotes the statement that whenever we colour S with θ colours, there will be a set $X \subseteq S$ with $|X|=\lambda$ such that $\mathrm{FS}(X)$ is monochromatic.

Theorem (F.B., 2015)

Let G be any uncountable abelian group. Then $G \nrightarrow\left(\aleph_{1}\right)_{2}^{\mathrm{FS}}$.

Definition

Once again, S is a commutative semigroup and θ, λ are cardinals. The symbol $S \rightarrow[\lambda]_{\theta}^{\mathrm{FS}}$ denotes the statement that whenever we colour S with θ colours, there will be a set $X \subseteq S$ with $|X|=\lambda$ such that $\mathrm{FS}(X)$ avoids at least one colour.

Theorem (F.B., 2015)

Let G be any uncountable abelian group. Then $G \nrightarrow\left(\aleph_{1}\right)_{2}^{\mathrm{FS}}$.

Definition

Once again, S is a commutative semigroup and θ, λ are cardinals. The symbol $S \nrightarrow[\lambda]_{\theta}^{\mathrm{FS}}$ denotes the statement that there exists a colouring of S with θ colours such that for every $X \subseteq S$ with $|X|=\lambda, \mathrm{FS}(X)$ is panchromatic.

Theorem (F.B., 2015)

Let G be any uncountable abelian group. Then $G \nrightarrow\left(\aleph_{1}\right)_{2}^{\mathrm{FS}}$.

Definition

Once again, S is a commutative semigroup and θ, λ are cardinals. The symbol $S \nrightarrow[\lambda]_{\theta}^{\mathrm{FS}}$ denotes the statement that there exists a colouring of S with θ colours such that for every $X \subseteq S$ with $|X|=\lambda, \mathrm{FS}(X)$ is panchromatic.

Thus,
Theorem (F.B., 2015)
Let G be any uncountable abelian group. Then $G \nrightarrow\left[\aleph_{1}\right]_{2}^{\mathrm{FS}}$.

Theorem (Milliken, 1978)

Suppose that G is a group such that $|G|=\kappa^{+}=2^{\kappa}$ for some cardinal κ. Then $G \nrightarrow\left[\kappa^{+}\right]_{\kappa^{+}}^{\mathrm{FS}}$
(Where $\mathrm{FS}_{n}(X)=\left\{x_{1}+\cdots+x_{n} \mid x_{1}, \ldots, x_{n} \in X\right.$ are distinct $\}$, so that $\mathrm{FS}(X)=\bigcup_{n \in \mathbb{N}} \mathrm{FS}_{n}(X)$.)

Theorem (Milliken, 1978)

Suppose that G is a group such that $|G|=\kappa^{+}=2^{\kappa}$ for some cardinal κ. Then $G \nrightarrow\left[\kappa^{+}\right]_{\kappa^{+}}^{\mathrm{FS}}$
(Where $\mathrm{FS}_{n}(X)=\left\{x_{1}+\cdots+x_{n} \mid x_{1}, \ldots, x_{n} \in X\right.$ are distinct $\}$, so that $\mathrm{FS}(X)=\bigcup_{n \in \mathbb{N}} \mathrm{FS}_{n}(X)$.)
(However, it is consistent with ZFC that $2^{\kappa}>\kappa^{+}$for every infinite cardinal κ.)

Theorem (Milliken, 1978)

Suppose that G is a group such that $|G|=\kappa^{+}=2^{\kappa}$ for some cardinal κ. Then $G \nrightarrow\left[\kappa^{+}\right]_{\kappa^{+}}^{\mathrm{FS}}$
(Where $\operatorname{FS}_{n}(X)=\left\{x_{1}+\cdots+x_{n} \mid x_{1}, \ldots, x_{n} \in X\right.$ are distinct $\}$, so that $\mathrm{FS}(X)=\bigcup_{n \in \mathbb{N}} \mathrm{FS}_{n}(X)$.)
(However, it is consistent with ZFC that $2^{\kappa}>\kappa^{+}$for every infinite cardinal κ.)

Theorem (Hindman, Leader and Strauss, 2015)
For every $n \geq 2$,

$$
\mathbb{R} \nrightarrow[\mathfrak{c}]_{2}^{\mathrm{FS}_{n}}
$$

Theorem (Komjáth and independently D. Soukup and W. Weiss)

For every $n \geq 2$,

$$
\mathbb{R} \nrightarrow\left[\omega_{1}\right]_{2}^{\mathrm{FS}_{n}} .
$$

Theorem (Komjáth and independently D. Soukup and W. Weiss)

For every $n \geq 2$,

$$
\mathbb{R} \nrightarrow\left[\omega_{1}\right]_{2}^{\mathrm{FS}} .
$$

Remark (D. Soukup and W. Weiss)

By a theorem of Shelah, it is consistent with ZFC (modulo a large cardinal hypothesis) that $\mathbb{R} \nrightarrow\left[\omega_{1}\right]_{3}^{\mathrm{FS}_{n}}$ fails for every $n \geq 2$.

Theorem (F.B. and Rinot, 2016)

Let G be any (uncountable) abelian group. Then $G \leftrightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}}$.

Theorem (F.B. and Rinot, 2016)

Let G be any (uncountable) abelian group. Then $G \nrightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}}$.

Theorem (F.B. and Rinot, 2016)

It is consistent with ZFC (by assuming $\mathbf{V}=\mathbf{L}$ plus the nonexistence of inaccessible cardinals) that $G \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{\mathrm{FS}}$ holds for every uncountable abelian group G.

Theorem (F.B. and Rinot, 2016)

Let G be any (uncountable) abelian group. Then $G \nrightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}}$.

Theorem (F.B. and Rinot, 2016)

It is consistent with ZFC (by assuming $\mathbf{V}=\mathbf{L}$ plus the nonexistence of inaccessible cardinals) that $G \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{\mathrm{FS}}$ holds for every uncountable abelian group G.

Theorem (F.B. and Rinot, 2016)

Modulo a large cardinal hypothesis (more specifically, the existence of an ω_{1}-Erdős cardinal), it is consistent with ZFC that $\mathbb{R} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{\mathrm{FS}}$ fails.

Theorem (F.B. and Rinot, 2016)

Let G be any (uncountable) abelian group. Then $G \nrightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}}$.

Theorem (F.B. and Rinot, 2016)

Let G be any (uncountable) abelian group. Then $G \nrightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}}$.

Theorem (F.B. and Rinot, 2016)

If G is an abelian group of cardinality \beth_{ω}, then $G \rightarrow[|G|]_{\omega}^{\mathrm{FS}_{n}}$ (in particular, $G \rightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}_{n}}$) for all $n \in \mathbb{N}$.

Theorem (F.B. and Rinot, 2016)

Let G be any (uncountable) abelian group. Then $G \nrightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}}$.

Theorem (F.B. and Rinot, 2016)

If G is an abelian group of cardinality \beth_{ω}, then $G \rightarrow[|G|]_{\omega}^{\mathrm{FS}_{n}}$ (in particular, $G \rightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}_{n}}$) for all $n \in \mathbb{N}$.

Theorem (F.B. and Rinot, 2016)

For every integer $n \geq 2$,

$$
\mathbb{R} \nrightarrow[\mathfrak{c}]_{\omega}^{\mathrm{FS}_{n}},
$$

in particular it is consistent (e.g. assuming CH) that $\mathbb{R} \nrightarrow\left[\omega_{1}\right]_{\omega}^{\mathrm{FS}_{n}}$.

Theorem (F.B. and Rinot, 2016)

For every integer $n \geq 2$,

$$
\mathbb{R} \nrightarrow[\mathfrak{c}]_{\omega}^{\mathrm{FS}_{n}} .
$$

Theorem (F.B. and Rinot, 2016)
For every integer $n \geq 2$,

$$
\mathbb{R} \nrightarrow[\mathfrak{c}]_{\omega}^{\mathrm{FS}_{n}} .
$$

Theorem (F.B. and Rinot, 2016)

If \mathfrak{c} is a successor cardinal (e.g., assuming CH), then

$$
\mathbb{R} \nrightarrow[\mathfrak{c}]_{\omega_{1}}^{\mathrm{FS}_{n}},
$$

for every integer $n \geq 2$.

Theorem (F.B. and Rinot, 2016)

For every integer $n \geq 2$,

$$
\mathbb{R} \nrightarrow\left[c_{\omega}^{\mathrm{FS}_{n}} .\right.
$$

Theorem (F.B. and Rinot, 2016)

If \mathfrak{c} is a successor cardinal (e.g., assuming CH), then

$$
\mathbb{R} \nrightarrow[\mathfrak{c}]_{\omega_{1}}^{\mathrm{FS}_{n}},
$$

for every integer $n \geq 2$.

Theorem (F.B. and Rinot, 2016)

Modulo a large cardinal hypothesis (concretely, the existence of a weakly compact cardinal), it is consistent with ZFC that $\mathbb{R} \nrightarrow[\mathrm{c}]_{\omega_{1}}^{\mathrm{FS}_{n}}$ fails for every integer $n \geq 2$.

Theorem (F.B. and Rinot, 2016)

The class of cardinals κ for which every abelian group G of cardinality κ satisfies $G \nrightarrow[\kappa]_{\kappa}^{\mathrm{FS}_{n}}$ for all $n \geq 2$, includes:

- $\kappa=\aleph_{1}, \aleph_{2}, \ldots, \aleph_{n}, \ldots$; in fact, every successor of a regular cardinal,
- every κ such that $\kappa=\lambda^{+}=2^{\lambda}$,
- every regular uncountable κ admitting a nonreflecting stationary set,
- consistently with ZFC, every regular uncountable cardinal κ.

Recall that we mentioned that $G \nrightarrow(\omega)_{\omega}^{\mathrm{FS}}$ for every infinite abelian group G.

Recall that we mentioned that $G \nrightarrow(\omega)_{\omega}^{\mathrm{FS}}$ for every infinite abelian group G.

Theorem (Komjáth 2016)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ (in fact, it suffices to take $\left.\lambda=\left(\beth_{2^{n-1}-1}(\kappa)\right)^{+}\right)$such that $\mathbb{B}(\lambda) \rightarrow(n)_{\kappa}^{\mathrm{FS}}$. (Here $\mathbb{B}(\lambda)$ denotes the unique (up to isomorphism) Boolean group of cardinality λ, whose most friendly incarnation is $\left([\lambda]^{<\omega}, \triangle\right)$.)

Recall that we mentioned that $G \nrightarrow(\omega)_{\omega}^{\mathrm{FS}}$ for every infinite abelian group G.

Theorem (Komjáth 2016)

Given any cardinal κ and any $n \in \mathbb{N}$, there exists a sufficiently large λ (in fact, it suffices to take $\left.\lambda=\left(\beth_{2^{n-1}-1}(\kappa)\right)^{+}\right)$such that $\mathbb{B}(\lambda) \rightarrow(n)_{\kappa}^{\mathrm{FS}}$. (Here $\mathbb{B}(\lambda)$ denotes the unique (up to isomorphism) Boolean group of cardinality λ, whose most friendly incarnation is $\left([\lambda]^{<\omega}, \triangle\right)$.)

Theorem (Komjáth 2016)

Given any κ and any $n \in \mathbb{N}$, there exists a sufficiently large cardinal λ (in fact, we can take $\left.\lambda=\left(\beth_{2^{n-1}}\left(\beth_{2^{n-1}-1}(\kappa)^{+}\right)\right)^{+}\right)$such that, for any colouring of $\mathbb{B}(\lambda)$ with κ colours, we can find elements $x_{\alpha, i}(\alpha<\kappa, i<n)$ such that the set

$$
\left\{x_{\alpha_{0}, i_{0}}+\cdots+x_{\alpha_{k}, i_{k}} \mid \alpha_{1}, \ldots, \alpha_{k}<\kappa \wedge i_{0}<i_{1}<\cdots<i_{k}<n\right\}
$$

is monochromatic. We denote this property with the symbol
$\mathbb{B}(\lambda) \rightarrow(\kappa \times n)_{\kappa}^{\mathrm{FS}_{\text {matrix }}}$.

Theorem (Carlucci, 2017)

Given an infinite cardinal κ and positive integers c, d, there exists a λ such that, for every abelian group G of cardinality λ, it is the case that for every c-colouring of G there exists $H \subseteq G$ with $|H|=\kappa$ and $a, b \in \mathbb{N}$ such that the set

$$
\bigcup_{n \in\{a, a+b, a+2 b, \ldots, a+d b\}} \mathrm{FS}_{n}(H)
$$

is monochromatic.

Theorem (Carlucci, 2017)

Given an infinite cardinal κ and positive integers c, d, there exists a λ such that, for every abelian group G of cardinality λ, it is the case that for every c-colouring of G there exists $H \subseteq G$ with $|H|=\kappa$ and $a, b \in \mathbb{N}$ such that the set

$$
\bigcup_{n \in\{a, a+b, a+2 b, \ldots, a+d b\}} \mathrm{FS}_{n}(H)
$$

is monochromatic.

Theorem (Carlucci, 2017)

Given an infinite cardinal κ and positive integers c, d, there exists a λ such that, for every abelian group G of cardinality λ, it is the case that for every c-colouring of G there exists $H \subseteq G$ with $|H|=\kappa$ and distinct $a_{1}, \ldots, a_{d} \in \mathbb{N}$ such that the set

$$
\bigcup_{n \in \mathrm{FS}\left(\left\{a_{1}, \ldots, a_{d}\right\}\right)} \mathrm{FS}_{n}(H)
$$

is monochromatic.

Theorem (F.B. and Lee, 2017)

Given κ, let $\lambda=\beth_{1}(\kappa)^{+}=\left(2^{\kappa}\right)^{+}$. Then for every abelian group G of cardinality λ, it is the case that

$$
G \rightarrow(2)_{\kappa}^{\mathrm{FS}} .
$$

Theorem (F.B. and Lee, 2017)

Given κ, let $\lambda=\beth_{1}(\kappa)^{+}=\left(2^{\kappa}\right)^{+}$. Then for every abelian group G of cardinality λ, it is the case that

$$
G \rightarrow(2)_{\kappa}^{\mathrm{FS}} .
$$

Theorem (F.B. and Lee, 2017)

The upper bound from the previous theorem is optimal. More concretely,

$$
\mathbb{B}\left(2^{\kappa}\right) \nrightarrow(2)_{\kappa}^{\mathrm{FS}} .
$$

Theorem (F.B. and Lee, 2017)

Given κ, let $\lambda=\beth_{1}(\kappa)^{+}=\left(2^{\kappa}\right)^{+}$. Then for every abelian group G of cardinality λ, it is the case that

$$
G \rightarrow(2)_{\kappa}^{\mathrm{FS}} .
$$

Theorem (F.B. and Lee, 2017)

The upper bound from the previous theorem is optimal. More concretely,

$$
\mathbb{B}\left(2^{\kappa}\right) \nrightarrow(2)_{\kappa}^{\mathrm{FS}} .
$$

Theorem (F.B. and Lee, 2017)

Given κ, let $\lambda=\left(2^{\kappa}\right)^{+}$. Then for every abelian group G of cardinality λ, it is the case that

$$
G \rightarrow(\kappa \times 2)_{\kappa}^{\mathrm{FS}} \mathrm{~S}_{\text {matrix }} .
$$

Definition

An n-adequate pattern is a sequence of n elements $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \bigoplus \mathbb{Z}$ such that for some fixed finite sequence s of nonzero integers, it is the case that

$$
\mathrm{NZ}\left[\operatorname{FS}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)\right]=\{s\},
$$

where $\mathrm{NZ}(x)$ denotes the sequence of non-zero entries of x.

Definition

An n-adequate pattern is a sequence of n elements $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \bigoplus \mathbb{Z}$ such that for some fixed finite sequence s of nonzero integers, it is the case that

$$
\operatorname{NZ}\left[\operatorname{FS}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)\right]=\{s\},
$$

where $\mathrm{NZ}(x)$ denotes the sequence of non-zero entries of x.

For example, the sequence $\langle(1,-1,0),(0,1,-1)\rangle$ is a 2 -adequate pattern.

Definition

An n-adequate pattern is a sequence of n elements $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \bigoplus \mathbb{Z}$ such that for some fixed finite sequence s of nonzero integers, it is the case that

$$
\operatorname{NZ}\left[\operatorname{FS}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)\right]=\{s\},
$$

where $\mathrm{NZ}(x)$ denotes the sequence of non-zero entries of x.

For example, the sequence $\langle(1,-1,0),(0,1,-1)\rangle$ is a 2 -adequate pattern.

Proposition (F.B. and Lee, 2017)

The following are equivalent:

- There exists an n-adequate pattern,
- for every κ there exists a λ such that every abelian group G with $|G|=\lambda$ satisfies $G \rightarrow(n)_{k}^{\mathrm{FS}}$.

Definition

We will use the symbol $G \nrightarrow(\lambda)_{\theta}^{+}$to denote the statement that there exists a colouring $c: G \longrightarrow \theta$ such that for every $X \subseteq G$ satisfying $|X|=\lambda$, the set $X+X$ cannot be monochromatic.

Definition

We will use the symbol $G \nrightarrow(\lambda)_{\theta}^{+}$to denote the statement that there exists a colouring $c: G \longrightarrow \theta$ such that for every $X \subseteq G$ satisfying $|X|=\lambda$, the set $X+X$ cannot be monochromatic.

All of the FS_{n} results of myself and Rinot mentioned previously still hold if we replace FS_{2} with + (because $\left.X+X=\mathrm{FS}_{2}(X) \cup 2 X\right)$.

Definition

We will use the symbol $G \nrightarrow(\lambda)_{\theta}^{+}$to denote the statement that there exists a colouring $c: G \longrightarrow \theta$ such that for every $X \subseteq G$ satisfying $|X|=\lambda$, the set $X+X$ cannot be monochromatic.

All of the FS_{n} results of myself and Rinot mentioned previously still hold if we replace FS_{2} with + (because $\left.X+X=\mathrm{FS}_{2}(X) \cup 2 X\right)$.

Question (Owings, 1974)

Is it the case that $\mathbb{N} \rightarrow(\omega)_{2}^{+}$?

Definition

We will use the symbol $G \nrightarrow(\lambda)_{\theta}^{+}$to denote the statement that there exists a colouring $c: G \longrightarrow \theta$ such that for every $X \subseteq G$ satisfying $|X|=\lambda$, the set $X+X$ cannot be monochromatic.

All of the FS_{n} results of myself and Rinot mentioned previously still hold if we replace FS_{2} with + (because $\left.X+X=\mathrm{FS}_{2}(X) \cup 2 X\right)$.

Question (Owings, 1974)

Is it the case that $\mathbb{N} \rightarrow(\omega)_{2}^{+}$?

Theorem (Hindman, 1979)

$N \nrightarrow(\omega)_{3}^{+}$.

Theorem (Hindman, Leader and Strauss, 2015)

It is consistent with the ZFC axioms (more concretely, it follows from $\mathfrak{c}<\aleph_{\omega}$) that $\mathbb{R} \nrightarrow(\omega)_{k}^{+}$for some finite k.

Theorem (Hindman, Leader and Strauss, 2015)

It is consistent with the ZFC axioms (more concretely, it follows from $\mathfrak{c}<\aleph_{\omega}$) that $\mathbb{R} \nrightarrow(\omega)_{k}^{+}$for some finite k.

> Theorem (Komjáth, Leader, Russell, Shelah, D. Soukup and Vidnyánszky, 2017)

Modulo large cardinals (more concretely, assuming the existence of a measurable cardinal), it is consistent that $\mathbb{R} \rightarrow(\omega)_{r}^{+}$for all finite r.

