Set Theory (sometimes) can solve your problem!

David J. Fernández Bretón

djfernan@umich.edu http://www-personal.umich.edu/~djfernan

> Mathematics Department, University of Michigan

August 31, 2015

David Fernández (Michigan)

30/07/2015 1 / 5

The Continuum Hypothesis (CH): "The continuum equals ℵ₁".

• = • •

The Continuum Hypothesis (CH): "The continuum equals \aleph_1 ".

Theorem (Gödel 1939)

It is impossible to disprove the CH from the ZFC axioms. This is, the CH is consistent with ZFC.

The Continuum Hypothesis (CH): "The continuum equals \aleph_1 ".

Theorem (Gödel 1939)

It is impossible to disprove the CH from the ZFC axioms. This is, the CH is consistent with ZFC.

Theorem (Cohen 1960)

It is impossible to prove the CH from the ZFC axioms. This is, \neg CH is consistent with ZFC.

The Continuum Hypothesis (CH): "The continuum equals \aleph_1 ".

Theorem (Gödel 1939)

It is impossible to disprove the CH from the ZFC axioms. This is, the CH is consistent with ZFC.

Theorem (Cohen 1960)

It is impossible to prove the CH from the ZFC axioms. This is, \neg CH is consistent with ZFC.

So, the CH is **undecidable** from the ZFC axioms.

A set $X \subseteq \mathbb{R}$ is said to have **strong measure zero** if for every sequence $\langle \varepsilon_n | n \in \mathbb{N} \rangle$ of positive real numbers, there is a sequence of intervals $\langle I_n | n \in \mathbb{N} \rangle$ with $\ell(I_n) < \varepsilon_n$ such that

$$X \subseteq \bigcup_{n=1}^{\infty} I_n$$

A set $X \subseteq \mathbb{R}$ is said to have **strong measure zero** if for every sequence $\langle \varepsilon_n | n \in \mathbb{N} \rangle$ of positive real numbers, there is a sequence of intervals $\langle I_n | n \in \mathbb{N} \rangle$ with $\ell(I_n) < \varepsilon_n$ such that

$$X \subseteq \bigcup_{n=1}^{\infty} I_n$$

The *Borel Conjecture* BC is the statement that every set that has strong measure zero must be countable.

A set $X \subseteq \mathbb{R}$ is said to have **strong measure zero** if for every sequence $\langle \varepsilon_n | n \in \mathbb{N} \rangle$ of positive real numbers, there is a sequence of intervals $\langle I_n | n \in \mathbb{N} \rangle$ with $\ell(I_n) < \varepsilon_n$ such that

$$X \subseteq \bigcup_{n=1}^{\infty} I_n$$

The *Borel Conjecture* BC is the statement that every set that has strong measure zero must be countable.

Theorem (Sierpiński 1928)

Assuming CH, there exists an uncountable set with strong measure zero. So \neg BC is consistent with ZFC.

A set $X \subseteq \mathbb{R}$ is said to have **strong measure zero** if for every sequence $\langle \varepsilon_n | n \in \mathbb{N} \rangle$ of positive real numbers, there is a sequence of intervals $\langle I_n | n \in \mathbb{N} \rangle$ with $\ell(I_n) < \varepsilon_n$ such that

$$X \subseteq \bigcup_{n=1}^{\infty} I_n$$

The *Borel Conjecture* BC is the statement that every set that has strong measure zero must be countable.

Theorem (Sierpiński 1928)

Assuming CH, there exists an uncountable set with strong measure zero. So \neg BC is consistent with ZFC.

Theorem (Laver 1976)

BC is consistent with ZFC. Hence, BC is undecidable from the ZFC axioms.

・ロト ・回ト ・ヨト ・ヨト

$$0 \longrightarrow A \xrightarrow{\iota} G \xrightarrow{\pi} B \longrightarrow 0$$

David Fernández (Michigan)

$$0 \longrightarrow A \xrightarrow{\iota} G \xrightarrow{\pi} B \longrightarrow 0$$

If we know A and B, the possibilities for G give rise to an abelian group denoted by Ext(B, A).

$$0 \longrightarrow A \xrightarrow{\iota} G \xrightarrow{\pi} B \longrightarrow 0$$

If we know A and B, the possibilities for G give rise to an abelian group denoted by Ext(B, A).

A **W-group** is an abelian group *A* satisfying that $Ext(A, \mathbb{Z})$ is trivial.

 $0 \longrightarrow A \xrightarrow{\iota} G \xrightarrow{\pi} B \longrightarrow 0$

If we know A and B, the possibilities for G give rise to an abelian group denoted by Ext(B, A).

A **W-group** is an abelian group *A* satisfying that $Ext(A, \mathbb{Z})$ is trivial.

A well-known characterization of free abelian groups can be rephrased so as to yield that all free groups are W-groups. The *Whitehead problem* was the question whether all W-groups are free abelian.

イロト イヨト イヨト イヨト

 $0 \longrightarrow A \xrightarrow{\iota} G \xrightarrow{\pi} B \longrightarrow 0$

If we know A and B, the possibilities for G give rise to an abelian group denoted by Ext(B, A).

A **W-group** is an abelian group *A* satisfying that $Ext(A, \mathbb{Z})$ is trivial.

A well-known characterization of free abelian groups can be rephrased so as to yield that all free groups are W-groups. The *Whitehead problem* was the question whether all W-groups are free abelian.

If we restrict ourselves to countable abelian groups, then the answer to this question is yes.

イロト イヨト イヨト イヨト

 $0 \longrightarrow A \xrightarrow{\iota} G \xrightarrow{\pi} B \longrightarrow 0$

If we know A and B, the possibilities for G give rise to an abelian group denoted by Ext(B, A).

A **W-group** is an abelian group *A* satisfying that $Ext(A, \mathbb{Z})$ is trivial.

A well-known characterization of free abelian groups can be rephrased so as to yield that all free groups are W-groups. The *Whitehead problem* was the question whether all W-groups are free abelian.

If we restrict ourselves to countable abelian groups, then the answer to this question is yes.

Theorem (Shelah 1974)

The **axiom of constructibility** implies that every W-group is free abelian. On the other hand, **Martin's axiom** implies that there are W-groups of cardinality \aleph_1 that are not free abelian. In other words, the Whitehead problem is undecidable from the ZFC axioms.

- Let \mathbb{H} be a separable infinite-dimensional Hilbert space.
- Let $\mathcal{B}(\mathbb{H})$ denote the C*-algebra of bounded operators in \mathbb{H} ,
- $\bullet\,$ and let $\mathcal{K}(\mathbb{H})$ be the ideal of compact operators.

- Let \mathbb{H} be a separable infinite-dimensional Hilbert space.
- Let $\mathcal{B}(\mathbb{H})$ denote the C*-algebra of bounded operators in \mathbb{H} ,
- $\bullet\,$ and let $\mathcal{K}(\mathbb{H})$ be the ideal of compact operators.

- Let \mathbb{H} be a separable infinite-dimensional Hilbert space.
- Let B(ℍ) denote the C*-algebra of bounded operators in ℍ,
- and let $\mathcal{K}(\mathbb{H})$ be the ideal of compact operators.

An automorphism of the Calkin algebra is said to be **inner** if it is of the form $x \mapsto u^*xu$ for some unitary $u \in C(\mathbb{H})$

- Let \mathbb{H} be a separable infinite-dimensional Hilbert space.
- Let B(ℍ) denote the C*-algebra of bounded operators in ℍ,
- and let $\mathcal{K}(\mathbb{H})$ be the ideal of compact operators.

An automorphism of the Calkin algebra is said to be **inner** if it is of the form $x \mapsto u^*xu$ for some unitary $u \in C(\mathbb{H})$

Theorem (Phillips, Weaver 2006)

The CH implies that there exists an outer automorphism of the Calkin algebra.

- Let \mathbb{H} be a separable infinite-dimensional Hilbert space.
- Let B(ℍ) denote the C*-algebra of bounded operators in ℍ,
- and let $\mathcal{K}(\mathbb{H})$ be the ideal of compact operators.

An automorphism of the Calkin algebra is said to be **inner** if it is of the form $x \mapsto u^*xu$ for some unitary $u \in C(\mathbb{H})$

Theorem (Phillips, Weaver 2006)

The CH implies that there exists an outer automorphism of the Calkin algebra.

Theorem (Farah 2011)

The Proper Forcing Axiom/Open Colouring Axiom/Todorcevic's Axiom implies that all automorphisms of the Calkin algebra are inner.

ヘロト ヘロト ヘヨト