Strongly Summable Ultrafilters in Forcing Extensions

David J. Fernández Bretón

Department of Mathematics and Statistics York University

29th. Summer Conference on Topology and its Applications July 26th., 2014; New York, U.S.

David Fernández (York University)

The Čech-Stone compactification of a discrete abelian group (G, +) is the set βG of all ultrafilters on G, with basic open sets of the form

$$\bar{A} = \{ p \in \beta G \big| A \in p \} \qquad (A \subseteq G).$$

Every $x \in G$ is identified with

$$\{A \subseteq G \mid x \in A\},\$$

and the group operation + on G is extended by the formula

$$p+q = \{A \subseteq G | \{x \in G | A - x \in q\} \in p\},\$$

making βG into a right-topological compact semigroup with $G^* = \beta G \setminus G$ as a closed subsemigroup.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let X be a subset (typically infinite) of elements of G.

$$FS(X) = \left\{ \sum_{x \in F} x \middle| F \in [X]^{<\omega} \setminus \{\varnothing\} \right\}.$$

Definition

We say that $p \in G^*$ is **strongly summable** if for every $A \in p$ there exists an infinite $X \subseteq G$ such that $p \ni FS(X) \subseteq A$ (i.e. *p* has a basis of FS-sets).

David Fernández (York University)

Theorem (Hindman-Blass on Z, Hindman-Protasov-Strauss in general)

Every strongly summable ultrafilter p is an idempotent (i.e. p = p + p).

Theorem (Hindman-Protasov-Strauss on T, F.B. in general)

If *G* is an abelian group and $p \in G^*$ is strongly summable, then whenever $q, r \in G^*$ are such that q + r = p, it must be the case that $q, r \in G + p$.

"The Boolean Group" will be $([\omega]^{<\omega}, \triangle)$. We will denote it by \mathbb{B} .

Theorem (Blass-Hindman, Hindman-Steprāns-Strauss, F.B.)

Given an arbitrary abelian group G, every strongly summable ultrafilter on G "looks like" a strongly summable ultrafilter on \mathbb{B} .

The cardinal invariant $\operatorname{cov}(\mathcal{M})$ is the least number of meagre sets needed to cover \mathbb{R} . It happens to equal $\mathfrak{m}(\operatorname{countable})$, hence writing that $\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$ means that Martin's Axiom holds when restricted to countable partial orders.

Theorem (Hindman, Blass-Hindman, Eisworth)

If $\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$ then there exists a strongly summable ultrafilter on \mathbb{B} . Moreover, whenever we have < \mathfrak{c} many sets $X_{\alpha} \subseteq \mathbb{B}$, $\alpha < \mathfrak{c}$ such that $\mathscr{F} = \{ \operatorname{FS}(X_{\alpha} \setminus Z) | \alpha < \mathfrak{c} \land X \in [X_{\alpha}]^{<\omega} \}$ has the strong finite intersection property, then there exists a strongly summable ultrafilter extending \mathscr{F} .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The cardinal invariant $\operatorname{cov}(\mathcal{M})$ is the least number of meagre sets needed to cover \mathbb{R} . It happens to equal $\mathfrak{m}(\operatorname{countable})$, hence writing that $\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$ means that Martin's Axiom holds when restricted to countable partial orders.

Theorem (Hindman, Blass-Hindman, Eisworth)

If $\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$ then there exists a strongly summable ultrafilter on \mathbb{B} . Moreover, whenever we have < \mathfrak{c} many sets $X_{\alpha} \subseteq \mathbb{B}$, $\alpha < \mathfrak{c}$ such that $\mathscr{F} = \{ \operatorname{FS}(X_{\alpha} \setminus Z) | \alpha < \mathfrak{c} \land X \in [X_{\alpha}]^{<\omega} \}$ has the strong finite intersection property, then there exists a strongly summable ultrafilter extending \mathscr{F} .

Question

Is it consistent that $cov(\mathcal{M}) < \mathfrak{c}$ and there exists a strongly summable ultrafilter on \mathbb{B} ?

・ロット (母) ・ ヨ) ・ ヨ)

Definition

Given an ultrafilter $p \in \mathbb{B}^*$ such that p + p = p (an idempotent ultrafilter), we define $\mathbb{L}(p)$ to be the **ultraLaver forcing**. This is, conditions T are subtrees of $\mathbb{B}^{<\omega}$ that have a *stem* s(T) (i.e. a node such that every $t \in T$ is comparable to s(T)) and such that, for every $t \in T$ with $t \ge s(T)$, we have that

$$\{x \in \mathbb{B} | t \frown x \in T\} \in p.$$

The ordering is just inclusion: $T \leq T'$ iff $T \subseteq T'$.

David Fernández (York University)

If G is a generic filter obtained by forcing with L(p), we let

$$X = \bigcap G = \bigcup_{T \in G} s(T).$$

Lemma

Every ground model $A \subseteq \mathbb{B}$ is "diagonalized" by X, in the sense that there exists a finite $F \subseteq X$ such that $FS(X \setminus F)$ is either $\subseteq A$ or disjoint from A, depending on whether or not $A \in p$.

David Fernández (York University)

Strongly Summable Ultrafilters & Forcing

SumTopo2014 26/07/2014 8 / 13

Start with two regular cardinals κ , λ such that $\lambda < \mathfrak{c} = \kappa$ in the ground model. Define an FS iteration $\langle \mathbb{P}_{\alpha} | \alpha \leq \lambda \rangle$ with iterands $\mathbb{Q}_{\alpha}^{\circ}$, by recursively defining names $p_{\alpha}^{\circ}, \mathbb{Q}_{\alpha}^{\circ}, \mathring{X}_{\alpha}$ (in that order) such that:

$$\mathbb{P}_{\alpha} \Vdash \quad \text{``p'_{\alpha} is an idempotent ultrafilter extending} \\ \left\{ \mathrm{FS}(\mathring{X}_{\xi} \setminus F) \middle| F \in [\mathring{X}_{\xi}]^{<\omega} \land \xi < \alpha \right\},$$

$$\mathbb{P}_{\alpha} \Vdash ``\mathbb{Q}_{\alpha} = \mathbb{L}(p_{\alpha})",$$

and \mathring{X}_{α} is the name for the generic set added to $V^{\mathbb{P}_{\alpha}}$ by $\mathbb{L}(\mathring{p}_{\alpha})$. Forcing with \mathbb{P}_{λ} yields a model with a strongly summable ultrafilter and $\operatorname{cov}(\mathcal{M}) = \lambda < \kappa = \mathfrak{c}$.

イロト イボト イヨト イヨト 二日

Definition

A forcing notion \mathbb{P} satisfies the **Laver property** if whenever $g: \omega \longrightarrow \omega$ (in the ground model) and \mathring{f} is the name of a function $: \omega \longrightarrow \omega$ such that $\Vdash ``\mathring{f} \leq \check{g}"$, there is $F: \omega \longrightarrow [\omega]^{<\omega}$ such that for every $n < \omega$, $|F(n)| \leq 2^n$ and $\Vdash ``\check{g}(\check{n}) \in \check{F}(\check{n})"$.

The Laver property is important because (1) it is preserved under CS iterations, and (2) whenever \mathbb{P} has the Laver property, it does not add any Cohen reals. Hence if we force with a CS iteration of forcings satisfying the Laver property, $\operatorname{cov}(\mathcal{M})$ in the generic extension will have the same value that it used to have in the ground model.

Theorem (F.B.)

If p is a stable ordered union ultrafilter, then $\mathbb{L}(p)$ satisfies the Laver property.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Hence we define a CS iteration of length ω_2 , by recursively defining names $\mathring{p}_{\alpha}, \mathring{Q}_{\alpha}, \mathring{X}_{\alpha}$ as follows: $\mathbb{P}_{\alpha} \Vdash ``\mathring{Q}_{\alpha} = \mathbb{L}(\mathring{p}_{\alpha})"$ and \mathring{X}_{α} is the name for the generic set added to $V^{\mathbb{P}_{\alpha}}$ by $\mathbb{L}(\mathring{p}_{\alpha})$.

The main difficulty lies in defining the p_{α}° . We let p_0 be any stable ordered union ultrafilter (note that the ground model, as well as all intermediate extensions, satisfy CH). $p_{\alpha+1}^{\circ}$ is always an ordered union ultrafilter extending $\{FS(X_{\alpha}^{\circ} \setminus F) | F \in [X_{\alpha}^{\circ}]^{<\omega}\}$, and for $\alpha = \bigcup \alpha$ of uncountable cofinality we just let p_{α}° be the (ultra)filter generated by $\{FS(X_{\xi}^{\circ} \setminus F) | F \in [X_{\xi}^{\circ}]^{<\omega} \land \xi < \alpha\}$.

Finally, if $\alpha = \bigcup \alpha$ has countable cofinality, we let $\langle \alpha_n | n < \omega \rangle$ be an increasing sequence, cofinal in α , and let \mathring{p}_{α} be (the name of) any stable ordered union ultrafilter extending $\{FS(X_{\alpha_n} \setminus F) | F \in [X_{\alpha_n}]^{<\omega} \land n < \omega\}$.

Forcing with \mathbb{P}_{ω_2} yields a model with a strongly summable ultrafilter (in fact, a stable ordered union ultrafilter). By the previously mentioned results about the Laver property, in this model $\operatorname{cov}(\mathcal{M}) = \omega_1 < \omega_2 = \mathfrak{c}$.

Model	∃ s.s. u.f.s on B?	Reason
FS ultraLaver	Yes	Ad-hoc
CS ultraLaver	Yes	Ad-hoc

Model	∃ s.s. u.f.s on B?	Reason
FS ultraLaver	Yes	Ad-hoc
CS ultraLaver	Yes	Ad-hoc
Solovay-Tennenbaum (MA)	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$
Cohen	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$
Hechler	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$

Model	∃ s.s. u.f.s on ₿?	Reason
FS ultraLaver	Yes	Ad-hoc
CS ultraLaver	Yes	Ad-hoc
Solovay-Tennenbaum (MA)	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$
Cohen	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$
Hechler	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$
Shelah's no P-point	No	No P-points
Laver	No	No rapid ultrafilters
Mathias	No	No rapid ultrafilters
Random	No	No rapid P-points
Miller	No	NCF

David Fernández (York University)

Strongly Summable Ultrafilters & Forcing

SumTopo2014 26/07/2014 12 / 13

Model	∃ s.s. u.f.s on B?	Reason
FS ultraLaver	Yes	Ad-hoc
CS ultraLaver	Yes	Ad-hoc
Solovay-Tennenbaum (MA)	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$
Cohen	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$
Hechler	Yes	$\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$
Shelah's no P-point	No	No P-points
Laver	No	No rapid ultrafilters
Mathias	No	No rapid ultrafilters
Random	No	No rapid P-points
Miller	No	NCF
Sacks	?	?

David Fernández (York University)

Strongly Summable Ultrafilters & Forcing

SumTopo2014 26/07/2014 12 / 13

Question

Are there strongly summable ultrafilters on \mathbb{B} in Sacks's model?

э

David Fernández (York University)

Strongly Summable Ultrafilters & Forcing

SumTopo2014 26/07/2014 13 / 13