Some results concerning Strongly Summable Ultrafilters on Abelian Groups

David J. Fernández Bretón

Department of Mathematics and Statistics York University

48th. Spring Topology and Dynamics Conference Richmond, Virginia, U.S., 15/03/2014

David Fernández (York University)

Strongly Summable Ultrafilters

Spring Topology 15/03/2014 1 / 11

The Čech-Stone compactification of a discrete abelian group (G, +) is the set βG of ultrafilters on G, with basic open sets of the form

$$\bar{A} = \{ p \in \beta G \big| A \in p \} \qquad (A \subseteq G).$$

Every $x \in S$ is identified with

$$\{A \subseteq G \mid x \in A\},\$$

and the group operation + on G is extended by the formula

$$p+q = \{A \subseteq G | \{x \in G | A - x \in q\} \in p\},\$$

and $G^* = \beta G \setminus G$ is a closed subsemigroup.

Denote by $\vec{x} = \langle x_n | n < \omega \rangle$ a sequence (typically injective) of elements of *G*.

$$\operatorname{FS}(\vec{x}) = \left\{ \sum_{n \in a} x_n \middle| a \in [\omega]^{<\omega} \setminus \{\emptyset\} \right\}.$$

Definition

We say that $p \in G^*$ is **strongly summable** if for every $A \in p$ there exists a sequence \vec{x} such that $p \ni FS(\vec{x}) \subseteq A$. (i.e. p has a basis of FS-sets)

・ロト ・日本 ・ヨト ・ヨト

Theorem (Hindman-Blass on \mathbb{Z} , Hindman-Protasov-Strauss in general)

Every strongly summable ultrafilter p is an idempotent (i.e. p = p + p).

Theorem (Hindman-Strauss)

Let $p \in \mathbb{Z}^*$ be a strongly summable ultrafilter, and let $q, r \in \omega^*$ be such that q + r = r + q = p. Then $q, r \in \mathbb{Z} + p$.

Theorem (Hindman-Protasov-Strauss)

If $G \subseteq \mathbb{T} = \mathbb{R}/\mathbb{Z}$, and $p \in G^*$ is strongly summable, then whenever $q, r \in G^*$ are such that q + r = r + q = p, it must be the case that $q, r \in G + p$.

イロト イポト イヨト イヨト 二日

Definition

We say that $p \in G^*$ has the **trivial sums property** if whenever $q, r \in G^*$ are such that q + r = p, we must have that $q, r \in G + p$.

Definition (Hindman-Protasov-Strauss)

An ultrafilter $p \in G^*$ is **sparse** if for every $A \in p$ there exist a sequence $\vec{x} = \langle x_n | n < \omega \rangle$ and a moiety M of ω such that $FS(\vec{x}) \subseteq A$ and $FS(\langle x_n | n \in M \rangle) \in p$.

Theorem (Hindman-Protasov-Strauss)

If $G \subseteq \mathbb{T}$ and $p \in G^*$ is sparse, then p has the trivial sums property.

イロト イポト イヨト イヨト 二日

Theorem (Hindman-Steprāns-Strauss)

We can assume that $G \subseteq \bigoplus_{n < \omega} \mathbb{T}$. If $p \in G^*$ is a strongly summable ultrafilter, and $\left\{ x \in S | \pi_{\rho(x)}(x) \neq \frac{1}{2} \right\} \in p, \quad (\rho(x) = \min\{i < \omega | \pi_i(x) \neq 0\})$

then p is sparse.

Theorem (F.B.)

No matter what G is, if $p \in G^*$ is strongly summable then it is sparse and it has the trivial sums property.

Definition (Blass)

A a nonprincipal ultrafilter p on $[\omega]^{<\omega}$ is called a **union ultrafilter** if for every $A \in p$ there exists a pairwise disjoint sequence $\vec{x} = \langle x_n | n < \omega \rangle$ of elements of $[\omega]^{<\omega}$ such that $p \ni FU(\vec{x}) \subseteq A$.

Definition (Hindman-Blass)

We will say that a strongly summable ultrafilter $p \in G^*$ is **additively** isomorphic to a union ultrafilter if for some sequence \vec{x} of elements of Gwith $FS(\vec{x}) \in p$, the mapping $\sum_{i \in a} x_i \longmapsto a$ sends p to a union ultrafilter.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Blass-Hindman for \mathbb{Z} , F.B. in general)

If $p \in G^*$ and $\{x \in G | 2x = 0\} \notin p$ then p is additively isomorphic to a union ultrafilter.

Theorem (F.B.)

Assume $cov(\mathcal{M}) = \mathfrak{c}$. Then, there exists a strongly summable ultrafilter on the Boolean group $([\omega]^{<\omega}, \triangle)$ which is not additively isomorphic to a union ultrafilter.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Hindman-Blass for Z, Hindman-Protasov-Strauss in general)

Given *G*, there exists a mapping $\mu : G \longrightarrow \omega$ such that, if $p \in G^*$ is strongly summable, then $\mu(p)$ is a *P*-point. Furthermore, if $\{x \in G | 2x = 0\} \notin p$, then $\mu(p)$ is rapid.

Theorem (Krautzberger)

If $p \in \mathbb{Z}^*$ then p is rapid. (Hence, if $p \in G^*$ and $\{x \in G | 2x = 0\} \notin p$, then p is rapid).

Theorem (F.B.)

Let $\max : [\omega]^{<\omega} \longrightarrow \omega$. If p is a strongly summable ultrafilter on the Boolean group $([\omega]^{<\omega}, \triangle)$, then both $\max(p)$ and p itself are rapid.

If p is a strongly summable ultrafilter on $G = ([\omega]^{<\omega}, \triangle)$, let

$$\Pr(p) = \{ (A, FS(X)) | A \in [G]^{<\omega} \land F \triangle(X) \in p \}$$

with $(A, FS(X)) \leq (B, FS(Y))$ iff $A \supseteq B$ and $FS(X \cup (A \setminus B)) \subseteq F \triangle (Y)$ (equivalently $X \cup (A \setminus B) \subseteq FS(Y)$).

Theorem (F.B.)

Let $\omega < \lambda < \kappa$ be two regular cardinals. A finite support iteration of length λ , with iterands of the form $\Pr(p) \star \operatorname{Fn}(\kappa, 2)$ (Fn($\kappa, 2$) is the forcing notion that adds κ many Cohen reals) yields a model where $\operatorname{cov}(\mathcal{M}) = \lambda$, $\mathfrak{c} = \kappa$ and there exists a strongly summable ultrafilter on *G* (actually, this ultrafilter is generated by λ elements, so $\mathfrak{u} = \lambda$ as well).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Blass, A. and Hindman, N., On Strongly Summable Ultrafilters and Union Ultrafilters, Trans. Amer. Math. Soc. 304 No. 1 (1987), 83-99.

- 📎 Hindman, N., Steprāns, J. and Strauss, D., Semigroups in which all Strongly Summable Ultrafilters are Sparse, New York J. Math. 18 (2012), 835-848.
- Hindman, N. and Strauss, D., Algebra in the Stone-Cech Compactification, de Gruyter Expositions in Mathematics 27, Walter de Gruyter, Berlin-New York, 1998.

Krautzberger, P., On strongly summable ultrafilters, New York J. Math. 16 📎 (2010), 629-649.

Krautzberger, P., On Union Ultrafilters, Order 29 (2012), 317-343.

イロン イロン イヨン イヨン 三日