Ends of nonmetrizable manifolds: a generalized bagpipe theorem

David Fernández-Bretón

djfernandez@im.unam.mx https://homepage.univie.ac.at/david.fernandez-breton/english.html

> Instituto de Matemáticas, Universidad Nacional Autónoma de México

Spring Topology and Dynamics Conference 2021

Generalized bagpipe theorem

arXiv:2004.10913

ENDS OF NON-METRIZABLE MANIFOLDS: A GENERALIZED BAGPIPE THEOREM

DAVID FERNÁNDEZ-BRETÓN AND NICHOLAS G. VLAMIS, AN APPENDIX WITH MATHIEU BAILLIF

ABSTRACT. We initiate the study of ends of non-metrizable manifolds and introduce the notion of short and long ends. Using the theory developed, we provide a characterization of (non-metrizable) surfaces that can be written as the topological sum of a metrizable manifold plus a countable number of "long pipes" in terms of their spaces of ends; this is a direct generalization of Nvikos's bagpipe theorem.

1. Introduction

An n-manifold is a connected Hausdorff topological space that is locally homeo-

D. Fernández (IM–UNAM)

Generalized bagpipe theorem

A manifold M is a connected topological space such that, for some fixed $n \in \mathbb{N}$, we have $(\forall x \in M)(\exists U \ni x \text{ open})(M \approx \mathbb{R}^n)$.

A manifold M is a paracompact connected topological space such that, for some fixed $n \in \mathbb{N}$, we have $(\forall x \in M)(\exists U \ni x \text{ open})(M \approx \mathbb{R}^n)$.

A **manifold** M is a paracompact (eq. metrizable, Lindelöff, etc.) connected topological space such that, for some fixed $n \in \mathbb{N}$, we have $(\forall x \in M)(\exists U \ni x \text{ open})(M \approx \mathbb{R}^n)$.

A metrizable manifold M is a paracompact (eq. metrizable, Lindelöff, etc.) connected topological space such that, for some fixed $n \in \mathbb{N}$, we have $(\forall x \in M)(\exists U \ni x \text{ open})(M \approx \mathbb{R}^n)$.

A metrizable manifold M is a paracompact (eq. metrizable, Lindelöff, etc.) connected topological space such that, for some fixed $n \in \mathbb{N}$, we have $(\forall x \in M)(\exists U \ni x \text{ open})(M \approx \mathbb{R}^n)$.

Some nonmetrizable 1-manifolds:

イロト イヨト イヨト イヨト

Some nonmetrizable 1-manifolds:

• The long ray,

< □ > < @

Some nonmetrizable 1-manifolds:

• The long ray, $\mathbb{L} = \omega_1 \times [0, 1)$

-

< □ > < @

Some nonmetrizable 1-manifolds:

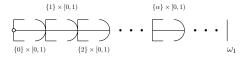
 The long ray, $\mathbb{L}=\omega_1\times [0,1)$ (as a LOTS with the lexicographical ordering)

Some nonmetrizable 1-manifolds:

• The long ray, $\mathbb{L} = \omega_1 \times [0, 1)$ (as a LOTS with the lexicographical ordering) with the least element removed,

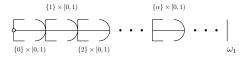
Some nonmetrizable 1-manifolds:

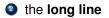
• The long ray, $\mathbb{L} = \omega_1 \times [0, 1)$ (as a LOTS with the lexicographical ordering) with the least element removed,



Some nonmetrizable 1-manifolds:

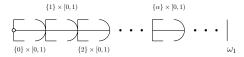
• The long ray, $\mathbb{L} = \omega_1 \times [0, 1)$ (as a LOTS with the lexicographical ordering) with the least element removed,





Some nonmetrizable 1-manifolds:

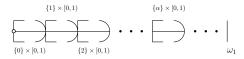
• The long ray, $\mathbb{L} = \omega_1 \times [0, 1)$ (as a LOTS with the lexicographical ordering) with the least element removed,



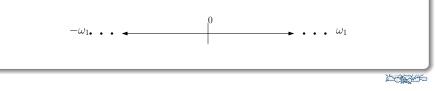
2 the **long line** $\mathbb{L}^{\leftrightarrow}$ (a doubled long ray),

Some nonmetrizable 1-manifolds:

• The long ray, $\mathbb{L} = \omega_1 \times [0, 1)$ (as a LOTS with the lexicographical ordering) with the least element removed,



2 the **long line** $\mathbb{L}^{\leftrightarrow}$ (a doubled long ray),



Some nonmetrizable 2-manifolds:

Some nonmetrizable 2-manifolds:

Some nonmetrizable 2-manifolds:

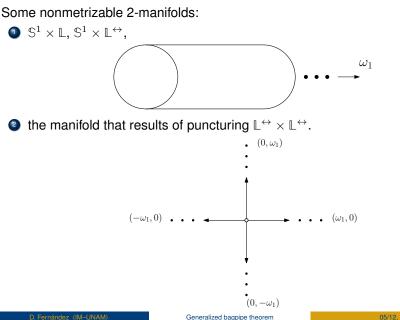
 $\ \, {\mathbb S}^1\times {\mathbb L},\, {\mathbb S}^1\times {\mathbb L}^\leftrightarrow,$

Some nonmetrizable 2-manifolds:

 $\ \, {\mathbb S}^1\times {\mathbb L},\, {\mathbb S}^1\times {\mathbb L}^\leftrightarrow,$

Some nonmetrizable 2-manifolds:

- $S^1 \times \mathbb{L}, S^1 \times \mathbb{L}^{\leftrightarrow},$
- **2** the manifold that results of puncturing $\mathbb{L}^{\leftrightarrow} \times \mathbb{L}^{\leftrightarrow}$.



5/12

A 2-manifold *M* is called a long pipe

< □ > < @

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_{\alpha}$, with each $M_{\alpha} \approx \mathbb{S}^1 \times [0, 1)$

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece)

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece) (with the $\mathbb{S}^1 \times \{0\}$ piece removed).

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece) (with the $\mathbb{S}^1 \times \{0\}$ piece removed).

Theorem (Nyikos's bagpipe theorem, 1984)

A nonmetrizable 2-manifold M

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece) (with the $\mathbb{S}^1 \times \{0\}$ piece removed).

Theorem (Nyikos's bagpipe theorem, 1984)

A nonmetrizable 2-manifold M is a bagpipe

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece) (with the $\mathbb{S}^1 \times \{0\}$ piece removed).

Theorem (Nyikos's bagpipe theorem, 1984)

A nonmetrizable 2-manifold M is a **bagpipe** (sum of a compact 2-manifold and finitely many long pipes)

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece) (with the $\mathbb{S}^1 \times \{0\}$ piece removed).

Theorem (Nyikos's bagpipe theorem, 1984)

A nonmetrizable 2-manifold M is a **bagpipe** (sum of a compact 2-manifold and finitely many long pipes) \iff

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece) (with the $\mathbb{S}^1 \times \{0\}$ piece removed).

Theorem (Nyikos's bagpipe theorem, 1984)

A nonmetrizable 2-manifold M is a **bagpipe** (sum of a compact 2-manifold and finitely many long pipes) \iff every countable $X \subseteq M$ has a compact closure

A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece) (with the $\mathbb{S}^1 \times \{0\}$ piece removed).

Theorem (Nyikos's bagpipe theorem, 1984)

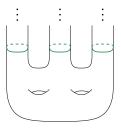
A nonmetrizable 2-manifold M is a **bagpipe** (sum of a compact 2-manifold and finitely many long pipes) \iff every countable $X \subseteq M$ has a compact closure (M is ω -bounded).

(日)

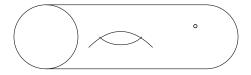
A 2-manifold M is called a **long pipe** if it can be written as $M = \bigcup_{\alpha < \omega_1} M_\alpha$, with each $M_\alpha \approx \mathbb{S}^1 \times [0, 1)$ (strictly increasing union, with all of the M_α sharing the $\mathbb{S}^1 \times \{0\}$ piece) (with the $\mathbb{S}^1 \times \{0\}$ piece removed).

Theorem (Nyikos's bagpipe theorem, 1984)

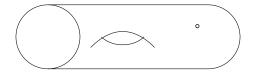
A nonmetrizable 2-manifold M is a **bagpipe** (sum of a compact 2-manifold and finitely many long pipes) \iff every countable $X \subseteq M$ has a compact closure (M is ω -bounded).



< □ > < 🗗 >



æ



An **end** of a manifold M is an element of the remainder $\mathcal{E}(M) = \mathcal{F}(M) \setminus M$, where $\mathcal{F}(M)$ is the Freudenthal compactification of M.

An **end** of a manifold M is an element of the remainder $\mathcal{E}(M) = \mathcal{F}(M) \setminus M$, where $\mathcal{F}(M)$ is the Freudenthal compactification of M.

Theorem (Richards's classification theorem, 1963)

A metrizable 2-manifold M is determined by its genus, orientability class, and end space

An **end** of a manifold M is an element of the remainder $\mathcal{E}(M) = \mathcal{F}(M) \setminus M$, where $\mathcal{F}(M)$ is the Freudenthal compactification of M.

Theorem (Richards's classification theorem, 1963)

A metrizable 2-manifold M is determined by its genus, orientability class, and end space (plus suitable information on the ends).

If M is a manifold and $e \in \mathcal{E}(M)$, then:

• = • •

If M is a manifold and $e \in \mathcal{E}(M)$, then:

e is a short end

If M is a manifold and $e \in \mathcal{E}(M)$, then:

• *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$

If M is a manifold and $e \in \mathcal{E}(M)$, then:

• *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),

If M is a manifold and $e \in \mathcal{E}(M)$, then:

- *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),
- 2 e is long end

If M is a manifold and $e \in \mathcal{E}(M)$, then:

- *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),
- 2 *e* is **long end** if it is a weak P-point in $\mathcal{F}(M)$

If *M* is a manifold and $e \in \mathcal{E}(M)$, then:

- *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),
- ② *e* is **long end** if it is a weak P-point in $\mathcal{F}(M)$ (i.e., *e* ∉ *X*′ for countable $X \subseteq \mathcal{F}(M)$).

If M is a manifold and $e \in \mathcal{E}(M)$, then:

- *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),
- ② *e* is **long end** if it is a weak P-point in $\mathcal{F}(M)$ (i.e., *e* ∉ *X*′ for countable $X \subseteq \mathcal{F}(M)$).

Example

Every end of a metrizable manifold

If M is a manifold and $e \in \mathcal{E}(M)$, then:

- *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),
- ② *e* is **long end** if it is a weak P-point in $\mathcal{F}(M)$ (i.e., *e* ∉ *X*′ for countable $X \subseteq \mathcal{F}(M)$).

Example

Every end of a metrizable manifold is short,

If M is a manifold and $e \in \mathcal{E}(M)$, then:

- *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),
- ② *e* is **long end** if it is a weak P-point in $\mathcal{F}(M)$ (i.e., *e* ∉ *X*′ for countable $X \subseteq \mathcal{F}(M)$).

Example

- Every end of a metrizable manifold is short,
- 2 $\mathbb{S}^1 \times \mathbb{L}$ has two ends,

If M is a manifold and $e \in \mathcal{E}(M)$, then:

- *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),
- ② *e* is **long end** if it is a weak P-point in $\mathcal{F}(M)$ (i.e., *e* ∉ *X*′ for countable $X \subseteq \mathcal{F}(M)$).

Example

- Every end of a metrizable manifold is short,
- **2** $\mathbb{S}^1 \times \mathbb{L}$ has two ends, one short, one long:

If M is a manifold and $e \in \mathcal{E}(M)$, then:

- *e* is a **short end** if it is a G_{δ} point of $\mathcal{F}(M)$ (equivalently, if *e* has a countable neighbourhood base in $\mathcal{F}(M)$),
- ② *e* is **long end** if it is a weak P-point in $\mathcal{F}(M)$ (i.e., *e* ∉ *X*′ for countable $X \subseteq \mathcal{F}(M)$).

Example

- Every end of a metrizable manifold is short,
- 2 $\mathbb{S}^1 \times \mathbb{L}$ has two ends, one short, one long:

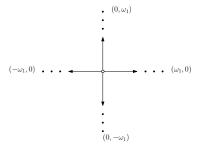
 ω_1

• The punctured long plane $\mathbb{L}^{\leftrightarrow} \times \mathbb{L}^{\leftrightarrow} \setminus \{(0,0)\}$

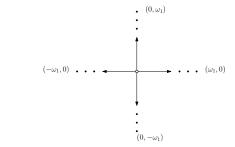
• The punctured long plane $\mathbb{L}^{\leftrightarrow} \times \mathbb{L}^{\leftrightarrow} \setminus \{(0,0)\}$ has two ends,

• The punctured long plane $\mathbb{L}^{\leftrightarrow} \times \mathbb{L}^{\leftrightarrow} \setminus \{(0,0)\}$ has two ends, one short, one long:

• The punctured long plane $\mathbb{L}^{\leftrightarrow} \times \mathbb{L}^{\leftrightarrow} \setminus \{(0,0)\}$ has two ends, one short, one long:

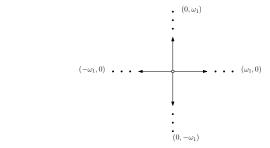


• The punctured long plane $\mathbb{L}^{\leftrightarrow} \times \mathbb{L}^{\leftrightarrow} \setminus \{(0,0)\}$ has two ends, one short, one long:



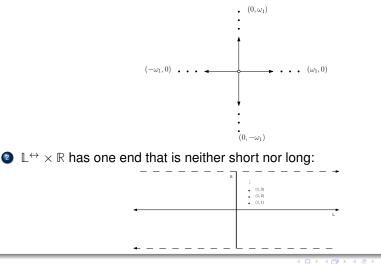
2 $\mathbb{L}^{\leftrightarrow} \times \mathbb{R}$ has one end

• The punctured long plane $\mathbb{L}^{\leftrightarrow} \times \mathbb{L}^{\leftrightarrow} \setminus \{(0,0)\}$ has two ends, one short, one long:



2 $\mathbb{L}^{\leftrightarrow} \times \mathbb{R}$ has one end that is neither short nor long:

• The punctured long plane $\mathbb{L}^{\leftrightarrow} \times \mathbb{L}^{\leftrightarrow} \setminus \{(0,0)\}$ has two ends, one short, one long:



For a manifold M, the following are equivalent:

For a manifold M, the following are equivalent:

• *M* is a bagpipe (equiv. *M* is ω -bounded),

For a manifold M, the following are equivalent:

- *M* is a bagpipe (equiv. *M* is ω -bounded),
- every end of M is long,

For a manifold *M*, the following are equivalent:

- *M* is a bagpipe (equiv. *M* is ω -bounded),
- every end of M is long,
- every end of M is long and $\mathcal{E}(M)$ is finite.

For a manifold M, the following are equivalent:

- *M* is a bagpipe (equiv. *M* is ω -bounded),
- every end of M is long,
- every end of M is long and $\mathcal{E}(M)$ is finite.

Theorem (F.B., Vlamis)

For a type I manifold M

Image: Image:

For a manifold *M*, the following are equivalent:

- *M* is a bagpipe (equiv. *M* is ω -bounded),
- 2 every end of M is long,
- every end of M is long and $\mathcal{E}(M)$ is finite.

Theorem (F.B., Vlamis)

For a **type I** manifold M (i.e. $M = \bigcup_{\alpha < \omega_1} M_{\alpha}$ where the union is nondecreasing and each M_{α} is open in M and metrizable),

・ロト ・同ト ・ヨト ・ヨ

For a manifold *M*, the following are equivalent:

- *M* is a bagpipe (equiv. *M* is ω -bounded),
- every end of M is long,
- every end of M is long and $\mathcal{E}(M)$ is finite.

Theorem (F.B., Vlamis)

For a **type I** manifold M (i.e. $M = \bigcup_{\alpha < \omega_1} M_{\alpha}$ where the union is nondecreasing and each M_{α} is open in M and metrizable), the following are equivalent:

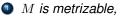
(日)

For a manifold *M*, the following are equivalent:

- *M* is a bagpipe (equiv. *M* is ω -bounded),
- 2 every end of M is long,
- every end of M is long and $\mathcal{E}(M)$ is finite.

Theorem (F.B., Vlamis)

For a **type I** manifold M (i.e. $M = \bigcup_{\alpha < \omega_1} M_{\alpha}$ where the union is nondecreasing and each M_{α} is open in M and metrizable), the following are equivalent:



(日)

For a manifold *M*, the following are equivalent:

- *M* is a bagpipe (equiv. *M* is ω -bounded),
- 2 every end of M is long,
- every end of M is long and $\mathcal{E}(M)$ is finite.

Theorem (F.B., Vlamis)

For a **type I** manifold M (i.e. $M = \bigcup_{\alpha < \omega_1} M_{\alpha}$ where the union is nondecreasing and each M_{α} is open in M and metrizable), the following are equivalent:

- M is metrizable,
- **2** $\mathcal{E}(M)$ is second countable and every end of M is short.

イロト イポト イヨト イヨト

For a manifold *M*, the following are equivalent:

- *M* is a bagpipe (equiv. *M* is ω -bounded),
- 2 every end of M is long,
- every end of M is long and $\mathcal{E}(M)$ is finite.

Theorem (F.B., Vlamis)

For a **type I** manifold M (i.e. $M = \bigcup_{\alpha < \omega_1} M_{\alpha}$ where the union is nondecreasing and each M_{α} is open in M and metrizable), the following are equivalent:

- M is metrizable,
- **2** $\mathcal{E}(M)$ is second countable and every end of M is short.

Theorem (Baillif, F.B., Vlamis)

The assumption that M is type I cannot be removed from the above theorem.

ヘロマ ヘロマ ヘロマ

TOR ALL

If M is a 2-manifold of type I, then the following are equivalent:

() $\mathcal{E}(M)$ is second countable and every end of M is either short or long,

- **(**) $\mathcal{E}(M)$ is second countable and every end of M is either short or long,
- If is a general bagpipe

- **(**) $\mathcal{E}(M)$ is second countable and every end of M is either short or long,
- M is a general bagpipe (sum of a connected open subset of the 2-sphere and countably many tori, projective planes,

- **(**) $\mathcal{E}(M)$ is second countable and every end of M is either short or long,
- M is a general bagpipe (sum of a connected open subset of the 2-sphere and countably many tori, projective planes, and long pipes).

If M is a 2-manifold of type I, then the following are equivalent:

- **(**) $\mathcal{E}(M)$ is second countable and every end of M is either short or long,
- M is a general bagpipe (sum of a connected open subset of the 2-sphere and countably many tori, projective planes, and long pipes).

Theorem (F.B., Vlamis)

It is impossible to remove the second countability requirement in the previous theorem

• □ ▶ • □ ▶ • □ ▶

If M is a 2-manifold of type I, then the following are equivalent:

- **(**) $\mathcal{E}(M)$ is second countable and every end of M is either short or long,
- M is a general bagpipe (sum of a connected open subset of the 2-sphere and countably many tori, projective planes, and long pipes).

Theorem (F.B., Vlamis)

It is impossible to remove the second countability requirement in the previous theorem (Aronszajn tree)

• □ ▶ • □ ▶ • □ ▶ •

If M is a 2-manifold of type I, then the following are equivalent:

- **(**) $\mathcal{E}(M)$ is second countable and every end of M is either short or long,
- M is a general bagpipe (sum of a connected open subset of the 2-sphere and countably many tori, projective planes, and long pipes).

Theorem (F.B., Vlamis)

It is impossible to remove the second countability requirement in the previous theorem (Aronszajn tree)

Theorem (Baillif, F.B., Vlamis)

It is impossible to remove the type I assumption in the generalized bagpipe theorem.

Friday, 3:00–3:20, Continuum Theory session:

FUNDAMENTA MATHEMATICAE 254 (2021)

Equicontinuous mappings on finite trees

by

Gerardo Acosta and David Fernández-Bretón (Ciudad de México)

Abstract. If X is a finite tree and $f: X \to X$ is a map, in the Main Theorem of this paper (Theorem 1.8), we find eight conditions, each of which is equivalent to f being equicontinuous. To name just a few of the results obtained: the equicontinuity of f is equivalent to there being no arc $A \subseteq X$ satisfying $A \subseteq f^n[A]$ for some $n \in \mathbb{N}$. It is also equivalent to the statement that for some nonprincipal ultrafilter u, the function $f^u: X \to X$ is continuous (in other words, failure of equicontinuity of f is equivalent to the failure of continuity of every element of the Ellis remainder $g \in E(X, f)^*$). One of the tools used in the proofs is the Ramsev-theoretic result known as Hindman's theorem

D. Fernández (IM–UNAM)

Generalized bagpipe theorem

05/12, STDC 2021 12/1