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ENDS OF NON-METRIZABLE MANIFOLDS:
A GENERALIZED BAGPIPE THEOREM

DAVID FERNANDEZ-BRETON AND NICHOLAS G. VLAMIS,
AN APPENDIX WITH MATHIEU BAILLIF

ABSTRACT. We initiate the study of ends of non-metrizable manifolds and
introduce the notion of short and long ends. Using the theory developed, we
provide a characterization of (non-metrizable) surfaces that can be written
as the topological sum of a metrizable manifold plus a countable number of
“long pipes” in terms of their spaces of ends; this is a direct generalization of
Nyikos’s bagpipe theorem.
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1. INTRODUCTION

An n- mamfold is a connected Hausdorff topologlcal space: that is locally homeo-



A manifold M is a
connected topological space such that, for some fixed n € N, we have
(Vz € M)(3U > x open)(M ~ R™).
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Some nonmetrizable 1-manifolds:
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Some nonmetrizable 2-manifolds:
Q@ S!xL,StxLe,

O e

@ the manifold that results of puncturing L¥ x L*.
. (0,w1)

(~w1,0) o o e o o (w,0)
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A 2-manifold M is called a long pipe if it can be written as M =
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A 2-manifold M is called a long pipe if it can be written as M =
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An end of a manifold M is an element of the remainder &(
where F(M) is the Freudenthal compactification of M.
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A metrizable 2-manifold M is determined by its genus, orientability class, and
end space
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An end of a manifold M is an element of the remainder £(M) = F(M) \ M,
where F(M) is the Freudenthal compactification of M.
A metrizable 2-manifold M is determined by its genus, orientability class, and
end space (plus suitable information on the ends).
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For a manifold M, the following are equivalent:
@ M is a bagpipe (equiv. M is w-bounded),
@ every end of M is long,
© every end of M is long and (M) is finite.

For atype | manifold M (i.e. M =, M. where the union is
nondecreasing and each M, is open in M and metrizable), the following are
equivalent:

@ M is metrizable,
@ &(M) is second countable and every end of M is short.
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If M is a 2-manifold of type |, then the following are equivalent:
@ £(M) is second countable and every end of M is either short or long,

@ M is a general bagpipe (sum of a connected open subset of the 2-sphere
and countably many tori, projective planes, and long pipes).

theorem (Aronszajn tree)

It is impossible to remove the second countability requirement in the previous

theorem.

It is impossible to remove the type | assumption in the generalized bagpipe
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Equicontinuous mappings on finite trees
by

Gerardo Acosta and David Fernandez-Bretén (Ciudad de México)

G LN

Abstract. If X is a finite tree and f: X — X is a map, in the Main Theorem of
this paper (Theorem 1.8), we find eight conditions, each of which is equivalent to f being
equicontinuous. To name just a few of the results obtained: the equicontinuity of f is
equivalent to there being no arc A C X satisfying A C f"[A] for some n € N. It is
also equivalent to the statement that for some nonprincipal ultrafilter u, the function
f*: X — X is continuous (in other words, failure of equicontinuity of f is equivalent to
the failure of contmulty of every element of the Ellis remainder g € E(X £)*). One of

ranfe ie the Ramaev-thearatic reanlt lenawr %,
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