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Abstract. We show that various analogs of Hindman’s Theorem fail in a strong sense when one attempts

to obtain uncountable monochromatic sets:

Theorem 1. There exists a colouring 𝑐 : R → Q, such that for every 𝑋 ⊆ R with |𝑋| = |R|, and every
colour 𝛾 ∈ Q, there are two distinct elements 𝑥0, 𝑥1 of 𝑋 for which 𝑐(𝑥0+𝑥1) = 𝛾. This forms a simultaneous

generalization of a theorem of Hindman, Leader and Strauss and a theorem of Galvin and Shelah.

Theorem 2. For every Abelian group 𝐺, there exists a colouring 𝑐 : 𝐺 → Q such that for every
uncountable 𝑋 ⊆ 𝐺, and every colour 𝛾, for some large enough integer 𝑛, there are pairwise distinct

elements 𝑥0, . . . , 𝑥𝑛 of 𝑋 such that 𝑐(𝑥0 + · · · + 𝑥𝑛) = 𝛾. In addition, it is consistent that the preceding

statement remains valid even after enlarging the set of colours from Q to R.
Theorem 3. Let ~𝜅 assert that for every Abelian group 𝐺 of cardinality 𝜅, there exists a colouring

𝑐 : 𝐺 → 𝐺 such that for every positive integer 𝑛, every 𝑋0, . . . , 𝑋𝑛 ∈ [𝐺]𝜅, and every 𝛾 ∈ 𝐺, there are

𝑥0 ∈ 𝑋0, . . . , 𝑥𝑛 ∈ 𝑋𝑛 such that 𝑐(𝑥0 + · · · + 𝑥𝑛) = 𝛾. Then ~𝜅 holds for unboundedly many uncountable
cardinals 𝜅, and it is consistent that ~𝜅 holds for all regular uncountable cardinals 𝜅.

1. Introduction

In one of its more general forms, Hindman’s Theorem (see [14, Corollary 5.9] for the general form; the
particular case 𝐺 = N was originally proved in [12]) asserts that whenever a commutative cancellative
semigroup 𝐺 is partitioned into two cells (i.e., coloured with two colours), there exists an infinite 𝑋 ⊆ 𝐺
such that the set of its finite sums

FS(𝑋) :=

{︃∑︁
𝑥∈𝑎

𝑥

⃒⃒⃒⃒
𝑎 ∈ [𝑋]<𝜔

}︃
is completely contained in one of the cells of the partition (i.e., FS(𝑋) is monochromatic). The infinite set
𝑋 ⊆ 𝐺 constructed in the proof of this theorem is countable, so it is natural to ask whether it is possible to
find, given a colouring of an uncountable commutative cancellative semigroup 𝐺, a subset 𝑋 ⊆ 𝐺 of a given
uncountable cardinality such that FS(𝑋) is monochromatic. This question was answered in the negative
in [6], where, given a commutative cancellative semigroup 𝐺, a colouring with two colours of 𝐺 is exhibited
such that no uncountable 𝑋 ⊆ 𝐺 can have FS(𝑋) monochromatic. A related result for the particular case
of the group R can be found in [13], where a colouring of R with two colours is exhibited, satisfying that
whenever 𝑋 ⊆ R has the same cardinality as R, then not only is FS(𝑋) not monochromatic, but even
FS2(𝑋) := {𝑥 + 𝑦 | 𝑥, 𝑦 ∈ 𝑋 distinct} is not monochromatic. In particular, assuming the Continuum
Hypothesis (CH),1 this result implies that for the aforementioned colouring of R, every uncountable subset
𝑋 is such that FS2(𝑋) is not monochromatic.

In this paper we shall consider stronger versions of these results, where colourings of uncountable com-
mutative cancellative semigroups 𝐺 are obtained, with more than two colours, satisfying that for every
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Ciencia y Tecnoloǵıa (CONACyT), Mexico. The second author was partially supported by the Israel Science Foundation (grant
#1630/14).
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2 D. FERNÁNDEZ AND A. RINOT

uncountable 𝑋 not only is FS(𝑋) not monochromatic, but in fact FS(𝑋) contains occurrences of every pos-
sible colour. In order to properly state our results, we will introduce some new notation, which is inspired
by the standard notation from Ramsey theory. Following [5, p. 56], for cardinals 𝜅, 𝜆, 𝜃, 𝜇, write

𝜅→ [𝜆]𝜇𝜃

to assert that for every colouring of [𝜅]𝜇 in 𝜃 many colours, it is possible to find an 𝑋 ⊆ 𝜅 with |𝑋| = 𝜆 such
that [𝑋]𝜇 omits at least one of the colours.2 Note that the negation of the above, denoted

𝜅9 [𝜆]𝜇𝜃 ,

asserts the existence of a colouring 𝑐 : [𝜅]𝜇 → 𝜃 such that for every 𝜆-sized subset 𝑋 of 𝜅, we have 𝑐“[𝑋]𝜇 = 𝜃.
So Ramsey’s theorem is just the assertion that 𝜔 → [𝜔]22 holds, however, when 𝜔 is replaced by larger
cardinals, typically one gets negative relations, sometimes quite strong (i.e., involving a large number of
colours). Negative square bracket partition relations have been studied extensively. For instance, in the
realm of 𝜔1, we have a sequence of results starting with Sierpiński’s uncountable poset [30] that admits no
uncountable chains nor uncountable antichains, thereby, witnessing 𝜔1 9 [𝜔1]22. Later, Blass [1] improved
this to 𝜔1 9 [𝜔1]23, and Galvin and Shelah [10] improved further to 𝜔1 9 [𝜔1]24. Then, Todorčević [33]
managed to gain control on the maximal number of colours, proving that 𝜔1 9 [𝜔1]2𝜔1

holds. Recently, even
more complicated statements were proven by Moore [20] and Peng and Wu [21].

In analogy with the above, we now define a negative partition relation for commutative semigroups,
involving finite sums (FS), bounded finite sums (FS𝑛), and sumsets (SuS).

Definition. For a commutative semigroup 𝐺, cardinals 𝜆, 𝜃, and an integer 𝑛:

(1) 𝐺 9 [𝜆]FS𝜃 asserts the existence of a colouring 𝑐 : 𝐺 → 𝜃 such that for every 𝜆-sized subset 𝑋 of 𝐺,
we have 𝑐[FS(𝑋)] = 𝜃;

(2) 𝐺9 [𝜆]FS𝑛

𝜃 asserts the existence of a colouring 𝑐 : 𝐺→ 𝜃 such that for every 𝜆-sized subset 𝑋 of 𝐺,
we have 𝑐[FS𝑛(𝑋)] = 𝜃, where FS𝑛(𝑋) := {𝑥1 + · · · + 𝑥𝑛 | 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 are all distinct};

(3) 𝐺 9 [𝜆]SuS𝜃 asserts the existence of a colouring 𝑐 : 𝐺 → 𝜃 such that for every integer 𝑚 ≥ 2, and
every 𝜆-sized subsets 𝑋1, . . . , 𝑋𝑚 of 𝐺, we have 𝑐[𝑋1 + · · · + 𝑋𝑚] = 𝜃, where 𝑋1 + · · · + 𝑋𝑚 :=
{𝑥1 + · · · + 𝑥𝑚 | ∀𝑖(𝑥𝑖 ∈ 𝑋𝑖)}.

Note that for all 𝜆 ≤ 𝜆′, 𝐺 ⊆ 𝐺′, 𝜃 ≤ 𝜃′, and x ∈ {FS𝑛,FS,SuS | 𝑛 < 𝜔}, 𝐺′ 9 [𝜆]x𝜃′ implies 𝐺 9 [𝜆′]x𝜃.

Also note that for every 𝑛, 𝐺9 [𝜆]FS𝑛

𝜃 implies 𝐺9 [𝜆]FS𝜃 . Finally, note that for every infinite cardinal 𝜆 and

every integer 𝑛 ≥ 2, 𝐺 9 [𝜆]SuS𝜃 implies 𝐺 9 [𝜆]FS𝑛

𝜃 simply because any infinite set 𝑋 may be partitioned
into

⨄︀𝑛
𝑖=1𝑋𝑖 in such a way that |𝑋𝑖| = |𝑋| for all 𝑖. And indeed, 𝐺9 [𝜆]SuS𝜃 will be the strongest negative

partition relation considered in this paper.

Using the above notation, we can now succinctly state the relevant web of results (in chronological order):

∙ The generalized Hindman theorem (see [14, Corollary 5.9]) asserts that 𝐺 → [𝜔]FS2 holds (that is,
𝐺9 [𝜔]FS2 fails) for every infinite commutative cancellative semigroup 𝐺;3

∙ Milliken [19] proved that 𝐺9 [𝜅+]FS2

𝜅+ holds whenever |𝐺| = 𝜅+ = 2𝜅 for some infinite cardinal 𝜅;4

∙ Hindman, Leader and Strauss [13, Theorem 3.2] proved that R 9 [c]FS𝑛
2 holds for every integer

𝑛 ≥ 2;
∙ The first author [6] proved that 𝐺 9 [𝜔1]FS2 holds for every uncountable commutative cancellative

semigroup 𝐺;
∙ Komjáth [18], and independently Soukup and Weiss [31], proved that R 9 [𝜔1]FS𝑛

2 holds for every
integer 𝑛 ≥ 2. They also pointed out [31, Corollary 2.3] that by a theorem of Shelah [27, Theorem 2.1],

it is consistent with ZFC (modulo a large cardinal hypothesis) that R 9 [𝜔1]FS𝑛
3 fails for every 𝑛 ≥ 2.

The main results of this paper read as follows:

2Here, [𝑋]𝜇 stands for the collection of all subsets of 𝑋 of cardinality 𝜇, where in the case that 𝑋 is a set of ordinals, we

identify these 𝜇-sized subsets with their increasing enumeration. In particular, [𝜅]2 = {⟨𝛼, 𝛽⟩ | 𝛼 < 𝛽 < 𝜅}.
3Consequently, 𝐺 → [𝜔]FS

𝑛 holds for every 𝑛 < 𝜔.
4However, it is consistent with ZFC that 2𝜅 > 𝜅+ for every infinite cardinal 𝜅 [7].
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Theorem A. 𝐺9 [𝜔1]FS𝜔 holds for every uncountable commutative cancellative semigroup 𝐺.

We shall show that the superscript FS in the preceding is optimal, by exhibiting an uncountable abelian
group 𝐺 for which 𝐺9 [𝜔1]FS𝑛

𝜔 fails for all 𝑛. We shall also address a stronger form of Theorem A, proving
that things can go both ways:

Theorem B1. It is consistent with ZFC that 𝐺9 [𝜔1]FS𝜔1
holds for every uncountable commutative cancella-

tive semigroup 𝐺.

Theorem B2. Modulo a large cardinal hypothesis, it is consistent with ZFC that R 9 [𝜔1]FS𝜔1
fails.

It turns out that partition relations for FS𝑛 sets can also go both ways. To exemplify on the real line:

Theorem C1. If c is a successor cardinal (e.g., assuming CH), then R 9 [c]SuS𝜔1
holds, and hence, so does

R 9 [c]FS𝑛
𝜔1

for every integer 𝑛 ≥ 2.

Theorem C2. Modulo a large cardinal hypothesis, it is consistent with ZFC that R 9 [c]FS𝑛
𝜔1

fails for every
integer 𝑛 ≥ 2.

The preceding raises the question of which negative partition relations for R are consequences of ZFC. For
this, we have the following simultaneous generalization of [10, Theorem 1] and [13, Theorem 3.2]:

Theorem C3. R 9 [c]FS𝑛
𝜔 holds for every integer 𝑛 ≥ 2.

Finally, we establish that the negative partition relation of the strongest form is quite a prevalent phe-
nomena:

Theorem D. Denote by ~𝜅 the assertion that 𝐺 9 [𝜅]SuS𝜅 holds for every commutative cancellative semi-
group 𝐺 of cardinality 𝜅. Then:

∙ ~𝜅 holds for 𝜅 = ℵ1,ℵ2, . . . ,ℵ𝑛, . . .; In fact, ~𝜅 holds for every 𝜅 which is a successor of regular
cardinal;

∙ ~𝜅 holds whenever 𝜅 = 𝜆+ = 2𝜆 or whenever 𝜅 is a regular uncountable cardinal admitting a
nonreflecting stationary set. In particular:

∙ It is consistent with ZFC that ~𝜅 holds for every regular uncountable cardinal 𝜅.

Organization of this paper. Theorems A, B1 and B2 are proved in Section 2. In Section 3, we establish
some new results on the partition calculus of uncountable cardinals. In Section 4, the machinery of Section 3
is invoked in proving, among other things, Theorem D. Section 5 focuses on the real line, and Theorems C1,
C2, C3 are derived there as corollaries.

2. Colourings for finite sums

We open this section by stating a structural result that will allow us to pass from elements of commutative
cancellative semigroups of cardinality 𝜅 to finite subsets of 𝜅, so that we are able to apply some machinery
from partition relations on cardinals to our semigroups.5 For this, we will need to lay down some terminology.

Definition 2.1. Given a sequence of groups ⟨𝐺𝛼 | 𝛼 < 𝜅⟩, define its direct sum to be the group⨁︁
𝛼<𝜅

𝐺𝛼 :=

{︃
𝑥 ∈

∏︁
𝛼<𝜅

𝐺𝛼

⃒⃒⃒⃒
𝑥(𝛼) equals the identity for all but finitely many 𝛼

}︃
.

Recall that a divisible group is an abelian group 𝐺 such that for every 𝑥 ∈ 𝐺 and every 𝑛 ∈ N, there exist
some 𝑧 ∈ 𝐺 such that 𝑛𝑧 = 𝑥.

Lemma 2.2. Suppose that 𝐺 is an infinite commutative cancellative semigroup. Denote 𝜅 := |𝐺|. Then
there exists a sequence of countable divisible groups, ⟨𝐺𝛼 | 𝛼 < 𝜅⟩, such that 𝐺 embeds in

⨁︀
𝛼<𝜅𝐺𝛼.

5The noncommutative case will be handled in a forthcoming paper.
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Proof. It is well-known that every commutative cancellative semigroup 𝐺 can be embedded in an abelian
group 𝐺′, which can furthermore be assumed to have the same cardinality as 𝐺.6 Next, since 𝐺′ is an abelian
group, it can be embedded in a divisible group 𝐺′′, by [8, Theorem 24.1]. Finally, by [8, Theorem 23.1],
each divisible group is isomorphic to a direct sum of some copies of Q with some quasicyclic groups Z(𝑝∞).7

Thus, we may assume that 𝐺′′ =
⨁︀

𝛼<𝜆𝐺𝛼, where each 𝐺𝛼 is equal to either Q, or Z(𝑝∞). By removing
spurious summands (i.e., the 𝛼 < 𝜆 such that 𝑥(𝛼) = 0 for every 𝑥 ∈ 𝐺) we can assume that the number of
summands is |𝐺|, in other words, that 𝜆 = 𝜅. Thus, 𝐺 embeds into

⨁︀
𝛼<𝜅𝐺𝛼, and each 𝐺𝛼 (being either Q

or Z(𝑝∞) for some 𝑝) is a countable divisible group. �

In what follows, given an infinite commutative cancellative semigroup 𝐺 of infinite cardinality 𝜅, we will
always implicitly fix an embedding of 𝐺 into

⨁︀
𝛼<𝜅𝐺𝛼, where each 𝐺𝛼 is countable, as per Lemma 2.2. This

allows us to define the support of an element 𝑥 ∈ 𝐺 to be the finite set

supp(𝑥) := {𝛼 < 𝜅 | 𝑥(𝛼) ̸= 0}.
Definition 2.3. A family of sets 𝒳 is said to be a ∆-system with root 𝑟 if for every two distinct 𝑥, 𝑥′ ∈ 𝒳 ,
we have 𝑥 ∩ 𝑥′ = 𝑟.

A ∆-system 𝒳 is said to be of the head-tail-tail form if:

∙ sup(𝑟) < min(𝑥 ∖ 𝑟) for all 𝑥 ∈ 𝒳 ;
∙ for any two distinct 𝑥, 𝑥′ ∈ 𝒳 , either sup(𝑥) < min(𝑥′ ∖ 𝑟) or sup(𝑥′) < min(𝑥 ∖ 𝑟).

A standard fact from Set Theory states that for every regular uncountable cardinal 𝜅 and every family 𝒳
consisting of 𝜅 many finite sets, there exists 𝒳 ′ ⊆ 𝒳 with |𝒳 ′| = 𝜅 such that 𝒳 ′ forms a ∆-system. In the
special case that 𝒳 ⊆ [𝜅]<𝜔, a ∆-subsystem 𝒳 ′ ⊆ 𝒳 may be found which is moreover of the head-tail-tail
form.

Proposition 2.4. Suppose that 𝑥1, . . . , 𝑥𝑛 are elements of a direct sum
⨁︀

𝛼<𝜅𝐺𝛼, and there exist a fixed
𝑟 ∈ [𝜅]<𝜔 and pairwise disjoint 𝑠1, . . . , 𝑠𝑛 ∈ [𝜅]<𝜔 satisfying supp(𝑥𝑖) = 𝑟 ⊎ 𝑠𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 (that is, the
set of corresponding supports forms a ∆-system with root 𝑟). Then

𝑠1 ∪ · · · ∪ 𝑠𝑛 ⊆ supp(𝑥1 + · · · + 𝑥𝑛) ⊆ 𝑟 ∪ 𝑠1 ∪ · · · ∪ 𝑠𝑛.
Proof. Let 𝛼 < 𝜅 be arbitrary. If 𝛼 /∈ 𝑟 ∪ 𝑠1 ∪ · · · ∪ 𝑠𝑛, then 𝛼 /∈ supp(𝑥𝑖) for any 𝑖, thus

(𝑥1 + · · · + 𝑥𝑛)(𝛼) = 𝑥1(𝛼) + · · · + 𝑥𝑛(𝛼) = 0 + · · · + 0 = 0,

therefore supp(𝑥1 + · · · + 𝑥𝑛) ⊆ 𝑟 ∪ 𝑠1 ∪ · · · ∪ 𝑠𝑛. Now, if 𝛼 ∈ 𝑠1 ∪ · · · ∪ 𝑠𝑛, then there exists a unique
1 ≤ 𝑖 ≤ 𝑛 with 𝛼 ∈ 𝑠𝑖. This means that 𝛼 ∈ supp(𝑥𝑖) but 𝛼 /∈ supp(𝑥𝑗) for 𝑗 ̸= 𝑖, in other words, 𝑥𝑖(𝛼) ̸= 0
but 𝑥𝑗(𝛼) = 0 for 𝑗 ̸= 𝑖. Therefore

(𝑥1 + · · · + 𝑥𝑛)(𝛼) = 𝑥1(𝛼) + · · · + 𝑥𝑖−1(𝛼) + 𝑥𝑖(𝛼) + 𝑥𝑖+1(𝛼) + 𝑥𝑛(𝛼)

= 0 + · · · + 0 + 𝑥𝑖(𝛼) + 0 + · · · + 0 = 𝑥𝑖(𝛼) ̸= 0,

thus 𝑠1 ∪ · · · ∪ 𝑠𝑛 ⊆ supp(𝑥1 + · · · + 𝑥𝑛). �

The main offshot of Proposition 2.4 is that, whenever we want to determine supp(𝑥1 + · · · + 𝑥𝑛) for
𝑥1, . . . , 𝑥𝑛 satisfying the corresponding hypothesis, the only coordinates 𝛼 that require careful inspection are
the 𝛼 ∈ 𝑟, where one must determine whether 𝑥1(𝛼) + . . .+𝑥𝑛(𝛼) is equal to 0. In the particular case where
𝑛 = 2, we obtain the fact, which will be useful later, that

supp(𝑥1) △ supp(𝑥2) ⊆ supp(𝑥1 + 𝑥2) ⊆ supp(𝑥1) ∪ supp(𝑥2).

In [6, Theorem 5], it was established that for every uncountable commutative cancellative semigroup 𝐺,
𝐺 9 [𝜔1]FS2 . This was done by colouring an element 𝑥 ∈ 𝐺 according to the parity of ⌊log2 | supp(𝑥)|⌋.8

6This is done by means of the same process which embeds the additive group N into Z, or the multiplicative group Z ∖ {0}
into Q ∖ {0}. This process yields 𝐺′ as a quotient of the semigroup 𝐺×𝐺, therefore |𝐺′| = |𝐺|.

7Recall that for a prime number 𝑝, the 𝑝-quasicyclic group (also known as the Prüfer 𝑝-group) is a countable divisible

subgroup of R/Z, defined by Z(𝑝∞) :=

{︂
𝑎
𝑝𝑛

+ Z

⃒⃒⃒⃒
𝑎 ∈ Z & 𝑛 < 𝜔

}︂
.

8The idea of colouring a finite set 𝐹 according to the parity of ⌊log2 |𝐹 |⌋ goes back to [2].
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Similarly, for every uncountable commutative cancellative semigroup 𝐺 and every positive integer 𝑚, it is
possible to define a colouring 𝑐 : 𝐺 −→ 𝑚 by declaring 𝑐(𝑥) to be the class of ⌊log2 | supp(𝑥)|⌋ modulo 𝑚.
Arguing in the same way as in the proof of [6, Theorem 5], one can show that every uncountable 𝑋 ⊆ 𝐺
satisfies 𝑐[FS(𝑋)] = 𝑚; so that every uncountable commutative cancellative semigroup 𝐺 satisfies 𝐺9 [𝜔1]FS𝑚
for every 𝑚 < 𝜔. In this section, among other things, we will show that every uncountable commutative
cancellative semigroup 𝐺 moreover satisfies 𝐺9 [𝜔1]FS𝜔 .

In order to simplify certain steps of the proof of the main theorem, let us introduce the following notion.

Definition 2.5. Let 𝐺 be a commutative semigroup, and 𝑋 ⊆ 𝐺.
We say that 𝑌 is a condensation of 𝑋 if there exists a family 𝒜 ⊆ [𝑋]<𝜔 consisting of pairwise disjoint

sets, such that

𝑌 =

{︃∑︁
𝑥∈𝑎

𝑥

⃒⃒⃒⃒
𝑎 ∈ 𝒜

}︃
.

The importance of this notion stems from the evident fact that if 𝑌 is a condensation of 𝑋, then FS(𝑌 ) ⊆
FS(𝑋). Thus the notion of “passing to a condensation” constitutes another, purely algebraic, form of
thinning-out a family of elements of 𝐺 which can be useful if we are dealing with finite sums without
restrictions on the number of summands.

The following argument was first used in [6] (in the proof of the Claim within the proof of Theorem 5
therein), and is encapsulated here as a lemma both for the convenience of the reader, and for future reference.

Lemma 2.6. Suppose that 𝐺 is a commutative cancellative semigroup, and 𝑋 ⊆ 𝐺 is a subset of regular
uncountable cardinality. Fix an embedding of 𝐺 into a direct sum

⨁︀
𝛼<𝜅𝐺𝛼, as per Lemma 2.2.

Then there exists a condensation 𝑌 of 𝑋 such that:

∙ supp[𝑌 ] := {supp(𝑦) | 𝑦 ∈ 𝑌 } forms a ∆-system of cardinality |𝑋|;
∙ for all 𝑦 ∈ 𝑌 and all 𝛼 in the root of supp[𝑌 ], 𝑦(𝛼) has an infinite order in 𝐺𝛼;
∙ for every positive integer 𝑛 and every 𝑦1, . . . , 𝑦𝑛 ∈ 𝑌 ,

supp(𝑦1 + · · · + 𝑦𝑛) = supp(𝑦1) ∪ · · · ∪ supp(𝑦𝑛).

Proof. Note that as 𝑥 ↦→ {⟨𝛼, 𝑥(𝛼)⟩ | 𝛼 ∈ supp(𝑥)} is an injection, and each 𝐺𝛼 is countable, we have
| supp[𝑌 ]| = |𝑌 | for every uncountable 𝑌 ⊆ 𝑋. In particular, | supp[𝑋]| is regular and uncountable, and by
passing to an equipotent subset of 𝑋, we may assume that supp[𝑋] forms a ∆-system.

Let 𝑟 denote the root of this system. If 𝑟 is empty, then we are done, as a consequence of Proposition 2.4.
Thus, suppose that 𝑟 is nonempty. Now, a finite number of applications of the pigeonhole principle allows
us to thin out 𝑋, without changing its cardinality, in such a way that for every 𝛼 ∈ 𝑟, there exists a
fixed 𝑔𝛼 ∈ 𝐺𝛼 such that 𝑥(𝛼) = 𝑔𝛼 for all 𝑥 ∈ 𝑋. Let 𝑟∞ := {𝛼 ∈ 𝑟 | 𝑔𝛼 is of infinite order}, and
𝑀 := {ord(𝑔𝛼) | 𝛼 ∈ 𝑟∖𝑟∞}. Since 𝑟 is finite, so is 𝑀 , thus we can take 𝑚 :=

∏︀
𝑛∈𝑀 𝑛 (in the understanding

that the empty product equals 1), thereby ensuring that 𝑚𝑔𝛼 = 0 for all 𝛼 ∈ 𝑟 ∖ 𝑟∞. Now we obtain a
condensation 𝑌 of 𝑋, by fixing some family 𝒜 ⊆ [𝑋]𝑚 consisting of exactly |𝑋| many pairwise disjoint
𝑚-sized sets, and then letting

𝑌 :=

{︃∑︁
𝑥∈𝑎

𝑥

⃒⃒⃒⃒
𝑎 ∈ 𝒜

}︃
.

Claim 2.6.1. supp[𝑌 ] forms a ∆-system of cardinality |𝑋| with root 𝑟∞.

Proof. For each 𝑥 ∈ 𝑋, denote 𝑠𝑥 := supp(𝑥) ∖ 𝑟, so that {𝑠𝑥 | 𝑥 ∈ 𝑋} is a family of pairwise disjoint sets.
Now, for any 𝑦 ∈ 𝑌 , there is an 𝑎 ∈ 𝒜 (with |𝑎| = 𝑚) such that 𝑦 =

∑︀
𝑥∈𝑎 𝑥, and we claim that

supp(𝑦) = 𝑟∞ ⊎

(︃⋃︁
𝑥∈𝑎

𝑠𝑥

)︃
.

This will show that supp[𝑌 ] forms a ∆-system with root 𝑟∞. This will also show that the map 𝑎 ↦→
supp(

∑︀
𝑥∈𝑎 𝑥) is an injection from 𝒜 to supp[𝑌 ], so that | supp[𝑌 ]| = |𝒜| = |𝑋|.
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Here goes. By Proposition 2.4, we know that
⋃︀

𝑥∈𝑎 𝑠𝑥 ⊆ supp(𝑦) ⊆ 𝑟∪
(︀⋃︀

𝑥∈𝑎 𝑠𝑥
)︀
, thus it suffices to prove

that for every 𝛼 ∈ 𝑟: 𝛼 ∈ supp(𝑦) ⇐⇒ 𝛼 ∈ 𝑟∞.
I For each 𝛼 ∈ 𝑟∞ and 𝑥 ∈ 𝑎, we have 𝑥(𝛼) = 𝑔𝛼 which is an element of infinite order. Hence

𝑦(𝛼) =
∑︁
𝑥∈𝑎

𝑥(𝛼) = 𝑚𝑔𝛼 ̸= 0.

I For each 𝛼 ∈ 𝑟 ∖ 𝑟∞ and 𝑥 ∈ 𝑎, we have 𝑥(𝛼) = 𝑔𝛼 which is an element whose order is a divisor of 𝑚.
Hence

𝑦(𝛼) =
∑︁
𝑥∈𝑎

𝑥(𝛼) = 𝑚𝑔𝛼 = 0.

Altogether, we have supp(𝑦) = 𝑟∞ ⊎
(︀⋃︀

𝑥∈𝑎 𝑠𝑥
)︀
.

Finally, given any two distinct 𝑦, 𝑦′ ∈ 𝑌 , pick 𝑎, 𝑎′ ∈ 𝒜 such that 𝑦 =
∑︀

𝑥∈𝑎 𝑥 and 𝑦′ =
∑︀

𝑥∈𝑎′ 𝑥. Then
by 𝑎 ∩ 𝑎′ = ∅ and since the 𝑠𝑥 are pairwise disjoint, we have that

supp(𝑦) ∩ supp(𝑧) =

(︃
𝑟∞ ∪

⋃︁
𝑥∈𝑎

𝑠𝑥

)︃
∩

(︃
𝑟∞ ∪

⋃︁
𝑥∈𝑏

𝑠𝑥

)︃
= 𝑟∞,

which shows that supp[𝑌 ] forms a ∆-system, with root 𝑟∞. �

Now let 𝑛 ∈ N, and let 𝑦1, . . . , 𝑦𝑛 ∈ 𝑌 be 𝑛 many distinct elements. It remains to prove that supp(𝑦1 +
· · · + 𝑦𝑛) = supp(𝑦1) ∪ · · · ∪ supp(𝑦𝑛). Denote 𝑠𝑖 := supp(𝑦𝑖) ∖ 𝑟∞. By Proposition 2.4,

𝑠1 ∪ · · · ∪ 𝑠𝑛 ⊆ supp(𝑦1 + · · · + 𝑦𝑛) ⊆ 𝑟∞ ∪ 𝑠1 ∪ · · · ∪ 𝑠𝑛 = supp(𝑦1) ∪ · · · ∪ supp(𝑦𝑛),

and therefore it suffices to prove that 𝑟∞ ⊆ supp(𝑦1 + · · ·+𝑦𝑛). So let 𝛼 ∈ 𝑟∞ be arbitrary. We have already
noticed that 𝑦𝑖(𝛼) = 𝑚𝑔𝛼 for each 1 ≤ 𝑖 ≤ 𝑛, where 𝑔𝛼 is an element of infinite order. Consequently

(𝑦1 + · · · + 𝑦𝑛)(𝛼) = 𝑦1(𝛼) + · · · + 𝑦𝑛(𝛼) = 𝑚𝑔𝛼 + · · · +𝑚𝑔𝛼 = (𝑛𝑚)𝑔𝛼 ̸= 0,

which shows that 𝛼 ∈ supp(𝑦1 + · · · + 𝑦𝑛), and we are done. �

We now arrive at the main technical result of this section.

Theorem 2.7. Suppose that 𝐺 is a commutative cancellative semigroup of uncountable cardinality 𝜅.
Then there exists a transformation 𝑑 : 𝐺 → [𝜅]<𝜔 with the property that for every uncountable 𝑋 ⊆ 𝐺,

there exists 𝐴 ⊆ 𝜅 such that |𝐴| = |𝑋| and 𝑑“FS(𝑋) ⊇ [𝐴]<𝜔.

Proof. We commence with an easy observation.

Claim 2.7.1. There exists a surjection 𝑓 : 𝜔 −→ [𝜔]<𝜔 satisfying the two:

∙ for all 𝑘 < 𝜔, 𝑓(𝑘) ⊆ 𝑘;
∙ for all 𝑚,𝑛 < 𝜔 and Ω ∈ [𝜔]<𝜔, there are infinitely many 𝑘 < 𝜔 such that 𝑓(𝑚+ 𝑛𝑘) = Ω.

Proof. For all 𝑚,𝑛, 𝑎, 𝑏 < 𝜔, the set

𝐷(𝑚,𝑛, 𝑎, 𝑏) := {𝜙 ∈ 𝜔𝜔 | ∃𝑘 < 𝜔[𝑘 ≥ 𝑎 & 𝜙(𝑚+ 𝑛𝑘) = 𝑏]}
is dense open in the Baire space 𝜔𝜔. So, by the Baire category theorem,

⋂︀
{𝐷(𝑚,𝑛, 𝑎, 𝑏) | 𝑚,𝑛, 𝑎, 𝑏 < 𝜔} ≠ ∅.

Pick 𝜙 from that intersection, along with an arbitrary surjection 𝜓 : 𝜔 → [𝜔]<𝜔. Then, define 𝑓 : 𝜔 → [𝜔]<𝜔,
by stipulating

𝑓(𝑘) :=

{︃
(𝜓 ∘ 𝜙)(𝑘), if (𝜓 ∘ 𝜙)(𝑘) ⊆ 𝑘,

0, otherwise.

Clearly, 𝑓 is as sought. �

Fix 𝑓 as in the preceding. For every finite set of ordinals 𝑧, let us denote by 𝜎𝑧 : |𝑧| ↔ 𝑧 the order-
preserving bijection, so that 𝜎𝑧(𝑖) stands for the 𝑖th-element of 𝑧.

Next, embed 𝐺 into
⨁︀

𝛼<𝜅𝐺𝛼, with each 𝐺𝛼 a countable abelian group, as per Lemma 2.2. Then, define
a colouring 𝑑 : 𝐺 −→ [𝜅]<𝜔 by stipulating:

𝑑(𝑥) := 𝜎supp(𝑥)“𝑓(| supp(𝑥)|).
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To see that 𝑑 works, let 𝑋 be some uncountable subset of 𝐺. The proof now splits into two cases,
depending on 𝜆 := |𝑋|.

Case 1. Suppose that 𝜆 is regular.
Let 𝑌 be given by Lemma 2.6 with respect to 𝑋. In particular, supp[𝑌 ] forms a ∆-system of cardinality

𝜆, with root, say, 𝑟. Denote 𝑚 := |𝑟|. Clearly, by passing to an equipotent subset of 𝑌 , we may assume the
existence of some positive integer 𝑛 and a strictly increasing function ℎ : 𝑚 → 𝑚 + 𝑛 such that for every
𝑦 ∈ 𝑌 :

∙ | supp(𝑦)| = 𝑚+ 𝑛, and
∙ 𝜎𝑟 = 𝜎supp(𝑦) ∘ ℎ.

Let 𝑎 be the maximal integer ≤ 𝑚 for which ℎ � 𝑎 is the identity function. In particular, 𝜎supp(𝑦)[𝑎] = 𝜎𝑟[𝑎]
for all 𝑦 ∈ 𝑌 .

Claim 2.7.2. There exist 𝑏 < 𝜔, 𝛿 ≤ 𝜅, and a sequence ⟨𝑦𝑖 | 𝑖 < 𝜆⟩ of elements of 𝑌 such that:

∙ {𝜎supp(𝑦𝑖)[𝑎+ 𝑏] | 𝑖 < 𝜆} forms a head-tail-tail ∆-system with root 𝜎𝑟[𝑎];
∙ 𝑖 ↦→ 𝜎supp(𝑦𝑖)(𝑎) is strictly-increasing over 𝜆;
∙ 𝜎supp(𝑦𝑖)[𝑎+ 𝑏] = supp(𝑦𝑖) ∩ 𝛿 for all 𝑖 < 𝜆.

Proof. By the choice of 𝑎, for all 𝑦 ∈ 𝑌 , we have min(supp(𝑦)∖𝑟) = 𝜎supp(𝑦)(𝑎). In particular, 𝑦 ↦→ 𝜎supp(𝑦)(𝑎)
is injective over 𝑌 . So, by the Dushnik-Miller theorem, we may pick a sequence ⟨𝑦𝑖 | 𝑖 < 𝜆⟩ of elements of 𝑌
such that 𝑖 ↦→ 𝜎supp(𝑦𝑖)(𝑎) is strictly increasing over 𝜆. Put 𝛿 := sup{𝜎supp(𝑦𝑖)(𝑎) | 𝑖 < 𝜆}. Clearly, cf(𝛿) = 𝜆.

Next, for all 𝑗 ≤ 𝑚+ 𝑛, let Λ𝑗 := {𝑖 < 𝜆 | supp(𝑦𝑖) ∩ 𝛿 = 𝜎supp(𝑦𝑖)[𝑗]}. This defines a partition of 𝜆 into
finitely many sets, and we may pick some positive integer 𝑏 such that |Λ𝑎+𝑏| = 𝜆.

Finally, recursively construct a (strictly-increasing) function 𝑔 : 𝜆→ Λ𝑎+𝑏 as follows:
I Let 𝑔(0) := min(Λ𝑎+𝑏);
I If 𝑖 < 𝜆 is nonzero and 𝑔 � 𝑖 has already been defined, let 𝛽 := sup𝑗<𝑖(supp(𝑦𝑔(𝑗))∩𝛿). By 𝑖 < 𝜆 = cf(𝛿),

we have 𝛽 < 𝛿, so we may let 𝑔(𝑖) := min{𝑗 ∈ Λ𝑎+𝑏 | 𝜎supp(𝑦𝑗)(𝑎) > 𝛽}.
Clearly, 𝑏, 𝛿 and the sequence ⟨𝑦𝑔(𝑖) | 𝑖 < 𝜆⟩ are as sought. �

Let 𝑏, 𝛿 and ⟨𝑦𝑖 | 𝑖 < 𝜆⟩ be as in the statement of the preceding claim. Denote 𝑧𝑖 := supp(𝑦𝑖) ∖ (𝑟 ∩ 𝛿).
Notice that min(𝑧𝑖) = min(supp(𝑦𝑖) ∖ 𝑟) = 𝜎supp(𝑦𝑖)(𝑎).

Figure 1: Illustration of the system produced by Claim 2.7.2.

- 𝜅[ ]
𝜎𝑟[𝑎]

[ ]
𝜎𝑧0 [𝑏]

[ ]
𝜎𝑧1 [𝑏] · · ·

[ ]
𝜎𝑧𝑖 [𝑏] · · · 𝛿

|
𝜎𝑟(𝑎)

|
𝜎𝑧8(𝑏+ 1)

|
𝜎𝑧1(𝑏+ 1) · · ·

We claim that 𝑑“FS(𝑋) ⊇ [𝐴]<𝜔 for the 𝜆-sized set 𝐴 := {min(𝑧𝑖) | 𝑖 < 𝜆}.
To see this, fix an arbitrary 𝑝 ∈ [𝐴]<𝜔. Let {𝛼𝑗 | 𝑗 < 𝑐} be the increasing enumeration of 𝑝, so that

𝑐 = |𝑝|. Set Ω := {𝑎 + 𝑏𝑗 | 𝑗 < 𝑐}. By the choice of the function 𝑓 , let us fix some integer 𝑘 > 𝑐 such that
𝑓(𝑚+ 𝑛𝑘) = Ω.

Let ⟨𝑖𝑗 | 𝑗 < 𝑘⟩ be a strictly increasing sequence of ordinals in 𝜆 such that for all 𝑗 < 𝑐, 𝑖𝑗 is the unique
ordinal to satisfy 𝛼𝑗 = min(𝑧𝑖𝑗 ). Put 𝑥 :=

∑︀
𝑗<𝑘 𝑥𝑗 , where 𝑥𝑗 := 𝑦𝑖𝑗 . By {𝑦𝑖𝑗 | 𝑗 < 𝑘} ⊆ 𝑌 , we have:

∙ 𝑥 ∈ FS(𝑋);
∙ supp(𝑥) =

⋃︀
𝑗<𝑘 supp(𝑥𝑗) = 𝑟 ⊎ (supp(𝑥0) ∖ 𝑟) ⊎ · · · ⊎ (supp(𝑥𝑘−1) ∖ 𝑟);

∙ supp(𝑥) ∩ 𝛿 = 𝜎𝑟[𝑎] ⊔ 𝜎supp(𝑥0)“[𝑎, 𝑎+ 𝑏] ⊔ · · · ⊔ 𝜎supp(𝑥𝑘−1)“[𝑎, 𝑎+ 𝑏].9

9Here, 𝑤 = 𝑧 ⊔ 𝑧′ asserts that 𝑤 = 𝑧 ∪ 𝑧′ and sup(𝑧) < min(𝑧′).
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In particular, | supp(𝑥)| = 𝑚+ 𝑛𝑘 > 𝑎+ 𝑏𝑐, and

𝑑(𝑥) =𝜎supp(𝑥)“𝑓(𝑚+ 𝑛𝑘) = 𝜎supp(𝑥)“Ω

={𝜎supp(𝑥)(𝑎+ 𝑏𝑗) | 𝑗 < 𝑐}
={𝜎supp(𝑥𝑗)(𝑎) | 𝑗 < 𝑐} = {𝜎supp(𝑦𝑖𝑗

)(𝑎) | 𝑗 < 𝑐}
={min(𝑧𝑖𝑗 ) | 𝑗 < 𝑐} = {𝛼𝑗 | 𝑗 < 𝑐} = 𝑝,

as sought.
Case 2. Suppose that 𝜆 is singular.
Let ⟨𝜆𝛾 | 𝛾 < cf(𝜆)⟩ be a strictly increasing sequence of regular cardinals converging to 𝜆, with 𝜆0 > cf(𝜆).

Let ⟨𝑋𝛾 | 𝛾 < cf(𝜆)⟩ be a partition of 𝑋 with |𝑋𝛾 | = 𝜆𝛾 for all 𝛾 < cf(𝜆).
For each 𝛾 < cf(𝜆), appeal to Lemma 2.6 with 𝑋𝛾 , to obtain a set 𝑌𝛾 . In particular, supp[𝑌𝛾 ] forms a

∆-system of cardinality 𝜆𝛾 , with root, say, 𝑟𝛾 . Let

𝛿𝛾 := min{𝛿 ≤ 𝜅 | |{min(supp(𝑦) ∩ (𝛿 ∖ 𝑟𝛾)) | 𝑦 ∈ 𝑌𝛾}| = 𝜆𝛾}.
Clearly, cf(𝛿𝛾) = 𝜆𝛾 . In particular, 𝛾 ↦→ 𝛿𝛾 is injective over cf(𝜆), and we may find some cofinal subset
Γ ⊆ cf(𝜆) over which 𝛾 ↦→ 𝛿𝛾 is strictly increasing. Put 𝛿 := sup𝛾∈Γ 𝛿𝛾 , and 𝑟 :=

⋃︀
𝛾∈Γ 𝑟𝛾 .

For all 𝛾 ∈ Γ, by 𝜆𝛾 > cf(𝜆) = cf(𝛿), let us fix a large enough 𝛽𝛾 < 𝛿 for which

𝑌 0
𝛾 := {𝑦 ∈ 𝑌𝛾 | min(supp(𝑦) ∖ 𝑟𝛾) < 𝛿𝛾 & supp(𝑦) ∩ 𝛿 ⊆ 𝛽𝛾}

has cardinality 𝜆𝛾 . Let Γ̄ be some sparse enough cofinal subset of Γ such that

sup{𝛽𝛾′ | 𝛾′ ∈ Γ̄ ∩ 𝛾} < 𝛿𝛾

for all 𝛾′ < 𝛾 both from Γ̄.
For all 𝛾 ∈ Γ, by minimality of 𝛿𝛾 and by 𝜆𝛾 > |[𝑟]<𝜔|, we infer that the following set has size 𝜆𝛾 :

𝑌 1
𝛾 := {𝑦 ∈ 𝑌 0

𝛾 |
(︀
sup{𝛽𝛾′ | 𝛾′ ∈ Γ̄ ∩ 𝛾} < min(supp(𝑦) ∖ 𝑟𝛾)

)︀
& (𝑦 ∩ 𝑟 = 𝑟𝛾)}.

Put 𝑌 :=
⨄︀

𝛾∈Γ̄ 𝑌
1
𝛾 . For all 𝑦 ∈ 𝑌 , let 𝛾(𝑦) denote the unique ordinal 𝛾 ∈ Γ̄ such that 𝑦 ∈ 𝑌 1

𝛾 .
Consider the following subset of 𝛿:

𝐴 := {min(supp(𝑦) ∖ 𝑟𝛾(𝑦)) | 𝑦 ∈ 𝑌 } ∖ 𝑟.

Claim 2.7.3. For each 𝛼 ∈ 𝐴, there exists a unique 𝑦 ∈ 𝑌 such that 𝛼 ∈ supp(𝑦).
In particular, |𝐴| = 𝜆.

Proof. Let 𝛼 ∈ 𝐴 be arbitrary. Fix some 𝑦𝛼 ∈ 𝑌 such that 𝛼 = min(supp(𝑦𝛼) ∖ 𝑟𝛾(𝑦𝛼)). Towards a
contradiction, suppose that there exists 𝑦 ∈ 𝑌 ∖ {𝑦𝛼} with 𝛼 ∈ supp(𝑦). There are three cases to consider,
each of which leads to a contradiction:

I Suppose that 𝛾(𝑦𝛼) = 𝛾(𝑦).
Then 𝛼 ∈ supp(𝑦𝛼) ∩ supp(𝑦) ⊆ 𝑟𝛾(𝑦) ⊆ 𝑟, contradicting the fact that 𝐴 ∩ 𝑟 = ∅.

I Suppose that 𝛾(𝑦𝛼) ∈ Γ̄ ∩ 𝛾(𝑦).
Then 𝛼 ∈ supp(𝑦𝛼) ∩ 𝛿 ⊆ 𝛽𝛾(𝑦𝛼) < min(supp(𝑦) ∖ 𝑟𝛾(𝑦)).
So, by 𝛼 ∈ supp(𝑦), it must be the case that 𝛼 ∈ 𝑟𝛾(𝑦) ⊆ 𝑟, contradicting the fact that 𝐴 ∩ 𝑟 = ∅.

I Suppose that 𝛾(𝑦) ∈ Γ̄ ∩ 𝛾(𝑦𝛼).
Then 𝛼 ∈ supp(𝑦) ∩ 𝛿 ⊆ 𝛽𝛾(𝑦) < min(supp(𝑦𝛼) ∖ 𝑟𝛾(𝑦𝛼)) = 𝛼. This is a contradiction. �

To see that 𝑑“FS(𝑋) ⊇ [𝐴]<𝜔, let 𝑝 be an arbitrary element of [𝐴]<𝜔. For each 𝛼 ∈ 𝑝, pick 𝑦𝛼 ∈ 𝑌 such
that min(supp(𝑦𝛼) ∖ 𝑟𝛾(𝑦𝛼)) = 𝛼. Write 𝑧 :=

∑︀
𝛼∈𝑝 𝑦𝛼.10 By Claim 2.7.3, we have 𝑝 ⊆ supp(𝑧).

Fix a large enough 𝛾 ∈ Γ̄ such that 𝛾 > 𝛾(𝑦𝛼) for all 𝛼 ∈ 𝑝. Put 𝜖 := min
(︀⋃︀

{supp(𝑦) ∖ 𝑟𝛾 | 𝑦 ∈ 𝑌 1
𝛾 }
)︀
. By

the choice of 𝛾 and the definition of 𝑌 1
𝛾 , we have 𝑝 ⊆ 𝜖.

Next, by |
∏︀

𝛽∈𝑟𝛾
𝐺𝛽 | ≤ 𝜔 and the pigeonhole principle, let us fix an uncountable 𝑌 2

𝛾 ⊆ 𝑌 1
𝛾 , a sequence

⟨𝑔𝛽 | 𝛽 ∈ 𝑟𝛾⟩, and a positive integer 𝑛, such that for all 𝑦 ∈ 𝑌 2
𝛾 :

10If 𝑝 = ∅, then 𝑧 stands for 0𝐺 (the identity element of 𝐺).
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∙ 𝑦(𝛽) = 𝑔𝛽 for all 𝛽 ∈ 𝑟𝛾 ;
∙ | supp(𝑦) ∖ 𝑟𝛾 | = 𝑛.

Let 𝛽 ∈ 𝑟𝛾 be arbitrary. As 𝑌𝛾 was provided by Lemma 2.6 and 𝛽 belongs to the root of supp[𝑌𝛾 ], we get
that for all 𝑦 ∈ 𝑌 2

𝛾 , 𝑔𝛽 = 𝑦(𝛽) has an infinite order. In particular, |{𝑘 < 𝜔 | 𝑧(𝛽) + 𝑘𝑔𝛽 = 0𝐺𝛽
}| ≤ 1.

As 𝑟𝛾 is finite, let us pick a large enough 𝐾 < 𝜔 such that {𝑘 < 𝜔 | ∃𝛽 ∈ 𝑟𝛾 [𝑧(𝛽) + 𝑘𝑔𝛽 = 0𝐺𝛽
]} ⊆ 𝐾, so

that 𝑧(𝛽) + 𝑘𝑔𝛽 ̸= 0𝐺𝛽
for all 𝛽 ∈ 𝑟𝛾 and 𝑘 ≥ 𝐾.

Pick an injective sequence ⟨𝑦𝑖 | 𝑖 < 𝐾⟩ of elements of 𝑌 1
𝛾 . Write 𝑧′ := 𝑧 +

∑︀
𝑖<𝐾 𝑦𝑖, and 𝑚 := | supp(𝑧′)|.

Put 𝑌 2
𝛾 := 𝑌 1

𝛾 ∖ {𝑦𝑖 | 𝑖 < 𝐾}. Recalling Claim 2.7.3, we infer that for every finite 𝒴 ⊆ 𝑌 2
𝛾 :

∙ 𝑝 ⊎ 𝑟𝛾 ⊆ supp(𝑧′ +
∑︀

𝑦∈𝒴 𝑦);

∙ | supp(𝑧′ +
∑︀

𝑦∈𝒴 𝑦)| = 𝑚+ 𝑛|𝒴|;
∙ supp(𝑧′) ∩ 𝜖 is an initial segment of supp(𝑧′ +

∑︀
𝑦∈𝒴 𝑦).

By 𝑝 ⊆ supp(𝑧′) ∩ 𝜖, let us fix Ω ∈ [| supp(𝑧′) ∩ 𝜖|]<𝜔 such that 𝜎supp(𝑧′)∩𝜖“Ω = 𝑝. By the choice of the

function 𝑓 , let us fix some 𝑘 < 𝜔 such that 𝑓(𝑚+ 𝑛𝑘) = Ω. Pick 𝒴 ∈ [𝑌 2
𝛾 ]𝑘, and set 𝑥 := 𝑧′ +

∑︀
𝑦∈𝒴 𝑦.

Then 𝑥 ∈ FS(𝑋), | supp(𝑥)| = 𝑚+ 𝑛𝑘, and

𝑑(𝑥) =𝜎supp(𝑥)“𝑓(𝑚+ 𝑛𝑘) = 𝜎supp(𝑥)“Ω

=(𝜎supp(𝑥) � | supp(𝑧′) ∩ 𝜖|)“Ω

=𝜎supp(𝑧′)∩𝜖“Ω = 𝑝,

as sought. �

Corollary 2.8. For every uncountable cardinals 𝜆 ≤ 𝜅 and a cardinal 𝜃, the following are equivalent:

(1) 𝜅9 [𝜆]<𝜔
𝜃 holds;

(2) 𝐺9 [𝜆]FS𝜃 holds for every commutative cancellative semigroup 𝐺 of cardinality 𝜅;
(3) 𝐺9 [𝜆]FS𝜃 holds for some commutative cancellative semigroup 𝐺 of cardinality 𝜅.

Proof. (1) =⇒ (2) Suppose that 𝜆, 𝜅, 𝜃 are as above, and that 𝑐 : [𝜅]<𝜔 → 𝜃 witnesses 𝜅9 [𝜆]<𝜔
𝜃 . That is,

for every 𝐴 ∈ [𝜅]𝜆, we have 𝑐“[𝐴]<𝜔 = 𝜃. Now, given a commutative cancellative semigroup 𝐺 of cardinality
𝜅, let 𝑑 : 𝐺→ [𝜅]<𝜔 be given by Theorem 2.7. Clearly, 𝑐 ∘ 𝑑 witnesses 𝐺9 [𝜆]FS𝜃 .

(2) =⇒ (3) This is trivial.
(3) =⇒ (1) Suppose that 𝐺 is a commutative cancellative semigroup of cardinality 𝜅, and that 𝑑 : 𝐺→ 𝜃

is a colouring witnessing 𝐺 9 [𝜆]FS𝜃 . Fix an injective enumeration {𝑥𝛼 | 𝛼 < 𝜅} of the elements of 𝐺, and
define 𝑐 : [𝜅]<𝜔 → 𝜃 by stipulating 𝑐({𝛼0, . . . , 𝛼𝑛}) := 𝑑(𝑥𝛼0

+ · · ·+𝑥𝛼𝑛
). Clearly, 𝑐 witnesses 𝜅9 [𝜆]<𝜔

𝜃 . �

Recall that (𝜅, 𝜇)� (𝜆, 𝜃) asserts that for every structure (𝐴,𝑅, . . .) for a countable first-order language
with a distinguished unary predicate, if (|𝐴|, |𝑅|) = (𝜅, 𝜇), then there exists an elementary substructure
(𝐵,𝑆, . . .) ≺ (𝐴,𝑅, . . .) with (|𝐵|, |𝑆|) = (𝜆, 𝜃).

To exemplify, let us point out that if 𝜃 is an infinite cardinal and there exists a 𝜃+-Kurepa tree, then
(𝜃++, 𝜃+)� (𝜃+, 𝜃) fails. Also note that the instance (𝜔2, 𝜔1)� (𝜔1, 𝜔) is known as Chang’s conjecture.

Corollary 2.9. For every infinite regular cardinal 𝜃 and every cardinal 𝜅 > 𝜃, the following are equivalent:

∙ (𝜅, 𝜃+)� (𝜃+, 𝜃) fails;
∙ 𝐺9 [𝜃+]FS𝜃+ holds for every commutative cancellative semigroup 𝐺 of cardinality 𝜅.

Proof. By a standard coding argument (using Skolem functions), the failure of (𝜅, 𝜃+)� (𝜃+, 𝜃) is equivalent
to 𝜅 9 [𝜃+]<𝜔

𝜃+,𝜃.11 Thus, recalling Corollary 2.8, it suffices to prove that 𝜅 9 [𝜃+]<𝜔
𝜃+,𝜃 is equivalent to

𝜅 9 [𝜃+]<𝜔
𝜃+ . Of course, only the forward implication requires an argument. Now, as 𝜃 is regular, we get

from [33] that 𝜃+ 9 [𝜃+]2𝜃+ holds. Then, as shown in [29], the conjunction of 𝜅9 [𝜃+]<𝜔
𝜃+,𝜃 with 𝜃+ 9 [𝜃+]2𝜃+

entails 𝜅9 [𝜃+]<𝜔
𝜃+ . �

Corollary 2.10. For every uncountable commutative cancellative semigroup 𝐺, 𝐺9 [𝜔1]FS𝜔 holds.

11For a proof, see Theorem 8.1 of [17].
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Proof. The map 𝑧 ↦→ |𝑧| witnesses that 𝜅 9 [𝜔]<𝜔
𝜔 holds for every infinite cardinal 𝜅. In particular,

𝜅9 [𝜔1]<𝜔
𝜔 holds for every uncountable cardinal 𝜅. Now, appeal to Corollary 2.8 with 𝜆 = 𝜔1 and 𝜃 = 𝜔. �

Modulo a large cardinal hypothesis, the preceding is optimal:

Proposition 2.11. If there exists an 𝜔1-Erdős cardinal, then in some forcing extension, R 9 [𝜔1]FS𝜔1
fails.

Furthermore, in this forcing extension, for every semigroup (𝐺, *) of size continuum and every colouring
𝑐 : 𝐺→ 𝜔1, there exists an uncountable subset 𝑋 ⊆ 𝐺 for which {𝑐(𝑥0 * · · · * 𝑥𝑛) | 𝑛 < 𝜔, 𝑥0, . . . , 𝑥𝑛 ∈ 𝑋} is
countable.

Proof. Let 𝜅 denote the 𝜔1-Erdős cardinal. So 𝜅 is strongly inaccessible and satisfies that for every 𝜃 < 𝜅
and every colouring 𝑑 : [𝜅]<𝜔 → 𝜃, there exists some 𝐻 ∈ [𝜅]𝜔1 such that 𝑑 � [𝐻]𝑛 is constant for all 𝑛 < 𝜔.

Let P denote the notion of forcing for adding 𝜅 many Cohen reals. We claim that the forcing extension
𝑉 P is as sought.

Suppose that 𝑐̊ is a P-name for a colouring 𝑐 : 𝐺→ 𝜔1 of a given semigroup (𝐺, *) of size continuum. As
𝑉 P |= c = 𝜅, let us simplify the matter and just assume that the underlying set 𝐺 is in fact 𝜅.

Working in 𝑉 , define a colouring 𝑑 : [𝜅]<𝜔 → [𝜔1]≤𝜔 by letting for all 𝑛 < 𝜔 and all 𝛼0 < . . . < 𝛼𝑛 < 𝜅:

𝑑(𝛼0, . . . , 𝛼𝑛) := {𝛿 < 𝜔1 | ∃𝜎 : {0, . . . , 𝑛} → {0, . . . , 𝑛}∃𝑝 ∈ P[𝑝 
 “̊𝑐(𝛼̌𝜎(0) * · · · * 𝛼̌𝜎(𝑛)) = 𝛿”]}.

As P is ccc, the range of 𝑑 indeed consists of countable subsets of 𝜔1. As 𝜅 is an 𝜔1-Erdős cardinal,
|[𝜔1]≤𝜔| < 𝜅 and we may pick some 𝐻 ∈ [𝜅]𝜔1 such that 𝑑“[𝐻]𝑛 is a singleton, say {𝐴𝑛}, for every positive
integer 𝑛. Then 𝐻 is an uncountable subset of 𝐺, 𝐴 :=

⋃︀∞
𝑛=1𝐴𝑛 is a countable subset of 𝜔1, and


 “∀𝑛 ∈ 𝜔̌∀𝑥0, . . . , 𝑥𝑛 ∈ 𝐻̌ [̊𝑐(𝑥0 * · · · * 𝑥𝑛) ∈ 𝐴]”. �

It is also consistent that the number of colours in Corollary 2.10 may be increased to the maximal possible
value. To see this, simply take 𝜃 to be 𝜔1 in the next statement:

Corollary 2.12. It is consistent with ZFC + GCH that for every commutative cancellative semigroup 𝐺,
𝐺9 [𝜃]FS𝜃 holds for every uncountable cardinal 𝜃.

Proof. If there exists an inaccessible cardinal in Gödel’s constructible universe 𝐿, then let 𝜇 denote the least
such one and work in 𝐿𝜇. Otherwise, work in 𝐿.

In both cases, we end up with a model of ZFC + GCH [11], satisfying 𝜅 9 [𝜃]<𝜔
𝜃 for every uncountable

cardinals 𝜃 ≤ 𝜅 [29]. Now, appeal to Corollary 2.8. �

The preceding is quite surprising (think of the instance |𝐺| = i𝜃+𝜔), but of course we are standing on
the shoulders of Rowbottom [26].

3. A set-theoretic interlude

This section is dedicated to study of the following new set-theoretic principles:

Definition 3.1. For infinite cardinals 𝜒 ≤ 𝜅, and an arbitrary cardinal 𝜃 ≤ 𝜅:

∙ S(𝜅, 𝜃) asserts the existence of a colouring 𝑑 : [𝜅]<𝜔 → 𝜃 satisfying the following. For every 𝜅-sized
family 𝒳 ⊆ [𝜅]<𝜔 and every 𝛿 < 𝜃, there exist two distinct 𝑥, 𝑦 ∈ 𝒳 such that 𝑑(𝑧) = 𝛿 whenever
(𝑥△ 𝑦) ⊆ 𝑧 ⊆ (𝑥 ∪ 𝑦);

∙ S*(𝜅, 𝜃, 𝜒) asserts the existence of a colouring 𝑑 : [𝜅]<𝜒 → 𝜃 satisfying the following. For every
integer 𝑛 ≥ 2, every sequence ⟨𝒳𝑖 | 𝑖 < 𝑛⟩ ∈

∏︀
𝑖<𝑛[[𝜅]<𝜒]𝜅, and every 𝛿 < 𝜃, there exists ⟨𝑥𝑖 | 𝑖 <

𝑛⟩ ∈
∏︀

𝑖<𝑛 𝒳𝑖 such that ⟨sup(𝑥𝑖) | 𝑖 < 𝑛⟩ is strictly increasing, and such that 𝑑(𝑧) = 𝛿 whenever

⋃︁
𝑖<𝑛

⎛⎝𝑥𝑖 ∖ ⋃︁
𝑗∈𝑛∖{𝑖}

𝑥𝑗

⎞⎠ ⊆ 𝑧 ⊆
⋃︁
𝑖<𝑛

𝑥𝑖.
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Hindman’s theorem is well-known to be equivalent to a Ramsey-theoretic statement concerning block
sequences. Thus, the reader may want to observe that whenever 𝑑 : [𝜅]<𝜔 → 𝜃 witnesses S(𝜅, 𝜃), then for
every block sequence 𝑥⃗ = ⟨𝑥𝛼 | 𝛼 < 𝜅⟩ of finite subsets of 𝜅 (i.e., satisfying max(𝑥𝛼) < min(𝑥𝛽) for all
𝛼 < 𝛽 < 𝜅), we have 𝑑“FU(𝑥⃗) = 𝜃 (indeed, for every 𝛿 < 𝜃, there exist 𝛼 < 𝛽 < 𝜅 such that 𝑑(𝑥𝛼 ∪𝑥𝛽) = 𝛿).

Observe that if 𝑑 furthermore witnesses S*(𝜅, 𝜃, 𝜔), then for every positive 𝑛 < 𝜔 and every 𝛿 < 𝜃, there
exist 𝛼0 < · · · < 𝛼𝑛 < 𝜅 such that 𝑑(𝑥𝛼0 ∪ · · · ∪ 𝑥𝛼𝑛) = 𝛿.

Proposition 3.2. For all infinite 𝜒 ≤ 𝜒′ ≤ 𝜅, and all 𝜃 ≤ 𝜃′ ≤ 𝜅:

(1) S*(𝜅, 𝜃′, 𝜒′) entails S*(𝜅, 𝜃, 𝜒);
(2) S*(𝜅, 𝜃, 𝜒) entails 𝜅9 [𝜅;𝜅]2𝜃;

(3) S*(𝜅, 𝜃, 𝜒) entails S(𝜅, 𝜃);
(4) S(𝜅, 𝜃) entails 𝜅9 [𝜅]2𝜃.

Proof. (1) This is obvious.
(2) Let 𝑑 : [𝜅]<𝜒 → 𝜃 be a witness to S*(𝜅, 𝜃, 𝜒). Define 𝑐 : [𝜅]2 → 𝜃 by letting 𝑐(𝛼, 𝛽) := 𝑑({𝛼, 𝛽}). Now,

suppose that we are given 𝑋,𝑌 ∈ [𝜅]𝜅. We need to verify that for all 𝛿 < 𝜃, there exist 𝛼 ∈ 𝑋 and 𝛽 ∈ 𝑌
such that 𝛼 < 𝛽 and 𝑐(𝛼, 𝛽) = 𝛿. Put 𝒳 := {{𝛼} | 𝛼 ∈ 𝑋} and 𝒴 := {{𝛽} | 𝛽 ∈ 𝑌 }. Fix 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴
such that sup(𝑥) < sup(𝑦) and 𝑑(𝑧) = 𝛿 whenever (𝑥△ 𝑦) ⊆ 𝑧 ⊆ (𝑥 ∪ 𝑦). Let 𝛼 := sup(𝑥) and 𝛽 := sup(𝑦).
Then 𝛼 ∈ 𝑋, 𝛽 ∈ 𝑌 , 𝛼 < 𝛽 and 𝑐(𝛼, 𝛽) = 𝛿, as sought.

(3) Let 𝑑 : [𝜅]<𝜒 → 𝜃 be a witness to S*(𝜅, 𝜃, 𝜒). We claim that 𝑑 � [𝜅]<𝜔 witnesses S(𝜅, 𝜃). To avoid
trivialities, suppose that 𝜃 > 1. In particular, by Clause (2) and Ramsey’s theorem, 𝜅 is uncountable.

Given a 𝜅-sized family 𝒳 ⊆ [𝜅]<𝜔, pick a partition 𝒳 = 𝒳0⊎𝒳1 with |𝒳0| = |𝒳1| = 𝜅. Then, by the choice
of 𝑑, for every 𝛿 < 𝜃, there exist 𝑥 ∈ 𝒳0 and 𝑦 ∈ 𝒳1 such that 𝑑(𝑧) = 𝛿 whenever (𝑥△ 𝑦) ⊆ 𝑧 ⊆ (𝑥 ∪ 𝑦).
Clearly, 𝑥, 𝑦 are distinct elements of 𝒳 .

(4) Similar to the proof of Clause (2). �

Proposition 3.3. Suppose that 𝜆 > cf(𝜆) = 𝜅 are infinite cardinals. Then for every cardinals 𝜃, 𝜒:

(1) S(𝜅, 𝜃) entails S(𝜆, 𝜃);
(2) S*(𝜅, 𝜃, 𝜒) entails S*(𝜆, 𝜃, 𝜒), provided that 𝜇<𝜒 < 𝜆 for every cardinal 𝜇 < 𝜆.

Proof. Pick a club Λ in 𝜆 with otp(Λ) = 𝜅, and derive a mapping ℎ : 𝜆→ 𝜅 by stipulating ℎ(𝛼) := otp(Λ∩𝛼).
(1) Let 𝑑 : [𝜅]<𝜔 → 𝜃 be a witness to S(𝜅, 𝜃). Define 𝑑ℎ : [𝜆]<𝜔 → 𝜃 by stipulating 𝑑ℎ(𝑧) := 𝑑(ℎ[𝑧]).
To see that 𝑑ℎ witnesses S(𝜆, 𝜃), suppose that we are given a 𝜆-sized family 𝒳 ⊆ [𝜆]<𝜔, and a prescribed

colour 𝛿 < 𝜃. Put 𝒳ℎ := {ℎ[𝑥] | 𝑥 ∈ 𝒳}. As |[𝜇]<𝜔| < 𝜆 = |𝒳 | for all 𝜇 ∈ Λ, we infer that 𝒳ℎ is a
𝜅-sized subfamily of [𝜅]<𝜔. Thus, by the choice of 𝑑, we may pick two distinct 𝑥′, 𝑦′ ∈ 𝒳ℎ such that 𝑑(𝑧′) = 𝛿
whenever (𝑥′△𝑦′) ⊆ 𝑧′ ⊆ (𝑥′∪𝑦′). Now, find 𝑥, 𝑦 ∈ 𝒳 such that ℎ[𝑥] = 𝑥′ and ℎ[𝑦] = 𝑦′. Clearly, 𝑥 and 𝑦 are
distinct. Finally, suppose that 𝑧 is some set satisfying (𝑥△𝑦) ⊆ 𝑧 ⊆ (𝑥∪𝑦). Then (𝑥′△𝑦′) ⊆ ℎ[𝑧] ⊆ (𝑥′∪𝑦′),
and hence 𝑑ℎ(𝑧) = 𝑑(ℎ[𝑧]) = 𝛿, as sought.

(2) Let 𝑑 : [𝜅]<𝜒 → 𝜃 be a witness to S*(𝜅, 𝜃, 𝜒). Define 𝑑ℎ : [𝜆]<𝜒 → 𝜃 by stipulating 𝑑ℎ(𝑧) := 𝑑(ℎ[𝑧]).
Note that for every 𝜆-sized family 𝒳 ⊆ [𝜆]<𝜒, 𝒳ℎ := {ℎ[𝑥] | 𝑥 ∈ 𝒳} is a 𝜅-sized sufamily of [𝜆]<𝜒, because
|[𝜇]<𝜒| < 𝜆 = |𝒳 | for all 𝜇 ∈ Λ. The rest of the verification is similar to that of Clause (1). �

Recall that Pr1(𝜅, 𝜅, 𝜃, 𝜒) asserts the existence of a colouring 𝑐 : [𝜅]2 → 𝜃 satisfying that for every 𝛾 < 𝜃
and every 𝒜 ⊆ [𝜅]<𝜒 of size 𝜅, consisting of pairwise disjoint sets, there exist 𝑥, 𝑦 ∈ 𝒜 with sup(𝑥) < min(𝑦)
for which 𝑐[𝑥× 𝑦] = {𝛾}.

Lemma 3.4. Suppose that Pr1(𝜅, 𝜅, 𝜃, 𝜒) holds for given infinite cardinals 𝜒 ≤ 𝜃 ≤ 𝜅 = cf(𝜅).
If 𝜅 is uncountable, and 𝜇<𝜒 < 𝜅 for every cardinal 𝜇 < 𝜅, then S*(𝜅, 𝜃, 𝜒) holds.

Proof. Let 𝑐 : [𝜅]2 → 𝜃 be a witness to Pr1(𝜅, 𝜅, 𝜃, 𝜒). Fix a bijection 𝜋 : 𝜃 ↔ 𝜃×𝜒. Define 𝑐0 : [𝜅]2 → 𝜃 and
𝑐1 : [𝜅]2 → 𝜒 in such a way that if 𝑐(𝛼, 𝛽) = 𝛾 and 𝜋(𝛾) = ⟨𝛿, 𝜖⟩, then 𝑐0(𝛼, 𝛽) = 𝛿 and 𝑐1(𝛼, 𝛽) = 𝜖.

Now, define 𝑑 : [𝜅]<𝜒 → 𝜃 as follows. Let 𝑧 ∈ [𝜅]<𝜒 be arbitrary. If 𝑀𝑧 := {⟨𝛼, 𝛽⟩ ∈ [𝑧]2 | 𝑐1(𝛼, 𝛽) =
sup(𝑐1“[𝑧]2)} is nonempty, then let 𝑑(𝑧) := 𝑐0(𝛼, 𝛽) for an arbitrary choice of ⟨𝛼, 𝛽⟩ from 𝑀𝑧. Otherwise, let
𝑑(𝑧) := 0.
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To see that 𝑑 works, suppose we are given a sequence ⟨𝒳𝑖 | 𝑖 < 𝑛⟩ ∈
∏︀

𝑖<𝑛[[𝜅]<𝜒]𝜅, for some integer 𝑛 ≥ 2,
along with some prescribed colour 𝛿 < 𝜃 .

By thinning-out, we may assume that for all 𝑖 < 𝑛, 𝒳𝑖 forms a ∆-system with root, say, 𝑟𝑖.
12 In particular,

for all 𝑖 < 𝑛, {𝑥 ∖ 𝑟𝑖 | 𝑥 ∈ 𝒳𝑖} consists of 𝜅 many pairwise disjoint bounded subsets of 𝜅. Consequently, we
can construct (e.g., by recursion on 𝛾 < 𝜅) a matrix ⟨𝑥𝛾𝑖 | 𝛾 < 𝜅, 𝑖 < 𝑛⟩ in such a way that for all 𝛾 < 𝛾′ < 𝜅
and 𝑖 < 𝑗 < 𝑛:

∙ 𝑟𝑖 ⊎ 𝑥𝛾𝑖 ∈ 𝒳𝑖;

∙ sup(𝑟0 ∪ · · · ∪ 𝑟𝑛−1) < min(𝑥𝛾𝑖 ) ≤ sup(𝑥𝛾𝑖 ) < min(𝑥𝛾𝑗 ) ≤ sup(𝑥𝛾𝑗 ) < min(𝑥𝛾
′

0 ).

By the pigeonhole principle, let us fix Γ ∈ [𝜅]𝜅 and 𝜖 < 𝜒 such that for all 𝛾 ∈ Γ:

∙ sup(𝑐1“[𝑟0 ∪ · · · ∪ 𝑟𝑛−1 ∪ 𝑥𝛾0 ∪ · · · ∪ 𝑥𝛾𝑛−1]2) = 𝜖.

Denote 𝑎𝛾 := 𝑥𝛾0 ⊎ · · · ⊎ 𝑥𝛾𝑛−1. As 𝒜 := {𝑎𝛾 | 𝛾 ∈ Γ} is a 𝜅-sized subfamily of [𝜅]<𝜒 consisting of pairwise

disjoint sets, we may now pick 𝛾 < 𝛾′ both from Γ for which 𝑐[𝑎𝛾 × 𝑎𝛾′ ] = {𝜋−1⟨𝛿, 𝜖+ 1⟩}.

Write 𝑥̄0 := 𝑟0 ⊎ 𝑥𝛾0 , and for all nonzero 𝑖 < 𝑛, write 𝑥̄𝑖 := 𝑟𝑖 ⊎ 𝑥𝛾
′

𝑖 . Clearly, ⟨𝑥̄𝑖 | 𝑖 < 𝑛⟩ ∈
∏︀

𝑖<𝑛 𝒳𝑖, and
⟨sup(𝑥̄𝑖) | 𝑖 < 𝑛⟩ is strictly increasing. Next, suppose that we are given 𝑧 satisfying

⋃︁
𝑖<𝑛

⎛⎝𝑥̄𝑖 ∖ ⋃︁
𝑗∈𝑛∖{𝑖}

𝑥̄𝑗

⎞⎠ ⊆ 𝑧 ⊆
⋃︁
𝑖<𝑛

𝑥̄𝑖.

Claim 3.4.1. 𝑀𝑧 is a nonempty subset of 𝑎𝛾 × 𝑎𝛾′ .

Proof. Let ⟨𝛼, 𝛽⟩ ∈ [𝑧]2 be arbitrary. As
⋃︀

𝑖<𝑛 𝑥̄𝑖 =
(︀⋃︀

𝑖<𝑛 𝑟𝑖
)︀
⊎𝑥𝛾0 ⊎

(︁⨄︀
0<𝑖<𝑛 𝑥

𝛾′

𝑖

)︁
, we consider the following

cases:

(1) Suppose that 𝛼 ∈
(︀⋃︀

𝑖<𝑛 𝑟𝑖
)︀
.

By 𝛽 ∈ (𝑟0 ∪ · · · ∪ 𝑟𝑛−1 ∪ 𝑥𝛾0 ∪ 𝑥𝛾
′

1 ∪ 𝑥𝛾
′

𝑛−1), we have 𝑐1(𝛼, 𝛽) ≤ 𝜖.
(2) Suppose that 𝛼 ∈ 𝑥𝛾0 .

(a) If 𝛽 ∈ (𝑟0 ∪ · · · ∪ 𝑟𝑛−1 ∪ 𝑥𝛾0), then 𝑐1(𝛼, 𝛽) ≤ 𝜖;

(b) If 𝛽 ∈
⨄︀

0<𝑖<𝑛 𝑥
𝛾′

𝑖 , then ⟨𝛼, 𝛽⟩ ∈ 𝑎𝛾 × 𝑎𝛾′ and hence 𝑐(𝛼, 𝛽) = 𝜋−1⟨𝛿, 𝜖+ 1⟩, so that 𝑐1(𝛼, 𝛽) =
𝜖+ 1.

(3) Suppose that 𝛼 ∈
⨄︀

0<𝑖<𝑛 𝑥
𝛾′

𝑖 .

(a) If 𝛽 ∈ 𝑥𝛾0 , then 𝛼 > 𝛽 which gives a contradiction to ⟨𝛼, 𝛽⟩ ∈ [𝑧]2;

(b) If 𝛽 ∈ 𝑟0 ∪ · · · ∪ 𝑟𝑛−1 ∪ 𝑥𝛾
′

1 ∪ · · ·𝑥𝛾
′

𝑛−1, then 𝑐1(𝛼, 𝛽) ≤ 𝜖.

Finally, by

𝑧 ⊇
⋃︁
𝑖<𝑛

⎛⎝𝑥̄𝑖 ∖ ⋃︁
𝑗∈𝑛∖{𝑖}

𝑥̄𝑗

⎞⎠ ⊇

(︃⋃︁
𝑖<𝑛

𝑥̄𝑖 ∖
⋃︁
𝑖<𝑛

𝑟𝑖

)︃
,

we have 𝑥𝛾0 × 𝑥𝛾
′

1 ⊆ [𝑧]2, so that case (2)(b) is indeed feasible. Consequently, 𝑀𝑧 is a nonempty subset of
𝑎𝑖 × 𝑎𝑗 . �

Let ⟨𝛼, 𝛽⟩ ∈ 𝑀𝑧 be such that 𝑑(𝑧) = 𝑐0(𝛼, 𝛽). By the preceding claim, 𝑐(𝛼, 𝛽) = 𝜋−1⟨𝛿, 𝜖 + 1⟩, so that
𝑑(𝑧) = 𝑐0(𝛼, 𝛽) = 𝛿, as sought. �

The colouring principle Pr1(· · · ) was studied extensively by many authors, including Eisworth, Galvin,
Rinot, Shelah, and Todorčević. To mention a few results:

Fact 3.5. Suppose that 𝜅 is a regular uncountable cardinal.
Then Pr1(𝜅, 𝜅, 𝜃, 𝜒) holds in all of the following cases:

(1) 𝜅 = 𝜃 = b = 𝜔1 and 𝜒 = 𝜔;
(2) 𝜅 = 𝜃 > 𝜒+, and �(𝜅) holds;13

12This is where we use the hypothesis that 𝜇<𝜒 < 𝜅 for every cardinal 𝜇 < 𝜅.
13The definition of �(𝜅) may be found in [33, p. 267].



STRONG FAILURES OF HINDMAN’S THEOREM 13

(3) 𝜅 = 𝜃 > 𝜒+, and 𝐸𝜅
≥𝜒 admits a non-reflecting stationary set;

(4) 𝜅 = 𝜃 = 𝜆+ > 𝜒+, and 𝜆 is regular;
(5) 𝜅 = 𝜃 = 𝜆+, 𝜆 is singular, 𝜒 = cf(𝜆), and pp(𝜆) = 𝜆+ (e.g., 𝜆cf(𝜆) = 𝜆+);14

(6) 𝜅 = 𝜃 = 𝜆+, 𝜆 is singular, 𝜒 = cf(𝜆), and there exists a collection of < cf(𝜆) many stationary subsets
of 𝜅 that do not reflect simultaneously;

(7) 𝜅 = 𝜆+, 𝜆 is singular, and 𝜃 = 𝜒 = cf(𝜆).

Proof. (1) By Lemma 1.0 of [34, S1].
(2) By Theorem B of [24].
(3) By Corollary 3.2 of [25].
(4) By Clause (3) above.
(5) By Corollary 6.2 of [4].
(6) By Corollary 3.3 of [23].
(7) By Conclusion 4.1 of [28]. �

It follows that S*(𝜆+, 𝜆+, 𝜔) holds for every regular cardinal 𝜆 ≥ 𝜔1. Now, what about S*(𝜔1, 𝜔1, 𝜔)?
I Galvin proved [9] that the failure of Pr1(𝜔1, 𝜔1, 𝜔1, 𝜔) is consistent with ZFC, and hence Lemma 3.4 is

inapplicable here.
I Getting just S(𝜔1, 𝜔1) turns out to be ready-made; It follows from Theorem 2.6 of [25] that S(𝜇+, 𝜇+)

holds for every infinite cardinal 𝜇 satisfying 𝜇<𝜇 = 𝜇.
Altogether, there is a need for a dedicated proof of S*(𝜔1, 𝜔1, 𝜔). This is our next task.

Theorem 3.6. S*(𝜔1, 𝜔1, 𝜔) holds.

Proof. As the product of c many separable topological spaces is again separable, let us pick a countable dense
subset {𝑓𝜄 | 𝜄 < 𝜔} of the product space 𝜔𝜔1 . Notice that this means that for every finite subset 𝑎 ⊆ 𝜔1 and
every function 𝑓 : 𝑎→ 𝜔, there exists some 𝜄 < 𝜔 such that 𝑓𝜄 � 𝑎 = 𝑓 .

Next, by Theorem 1.5 of [20], let us pick a function osc : [𝜔1]2 → 𝜔 satisfying that for every positive
integers 𝑘, 𝑙, every uncountable families 𝒜 ⊆ [𝜔1]𝑘 and ℬ ⊆ [𝜔1]𝑙, each consisting of pairwise disjoint sets,
and every 𝑠 < 𝜔, there exist 𝑎 ∈ 𝒜 and a sequence ⟨𝑏𝑚 | 𝑚 < 𝑠⟩ of elements in ℬ such that for all 𝑚 < 𝑠:

∙ max(𝑎) < min(𝑏𝑚), and
∙ osc(𝑎(𝑖), 𝑏𝑚(𝑗)) = osc(𝑎(𝑖), 𝑏0(𝑗)) +𝑚 for all 𝑖 < 𝑘 and 𝑗 < 𝑙.15

For every nonzero 𝛼 < 𝜔1, fix a surjection 𝜓𝛼 : 𝜔 → 𝛼. Finally, define the function 𝑑 : [𝜔1]<𝜔 → 𝜔1 as
follows. Let 𝑧 ∈ [𝜔1]<𝜔 be arbitrary. If 𝑀𝑧 := {⟨𝛼, 𝛽⟩ ∈ [𝑧]2 | osc(𝛼, 𝛽) = sup(osc “[𝑧]2)} is empty, then let
𝑑(𝑧) := ∅. Otherwise, pick an arbitrary ⟨𝛼, 𝛽⟩ from 𝑀𝑧, let 𝜄 be the maximal natural number to satisfy that
2𝜄 divides osc(𝛼, 𝛽), and then put 𝑑(𝑧) := 𝜓𝛼(𝑓𝜄(𝛼)).

To see that 𝑑 works, suppose we are given a sequence ⟨𝒳𝑖 | 𝑖 < 𝑛⟩ ∈
∏︀

𝑖<𝑛[[𝜔1]<𝜔]𝜔1 , for some integer
𝑛 ≥ 2, along with some prescribed colour 𝛿 < 𝜔1. As in the proof of Lemma 3.4, we may find a matrix
⟨𝑥𝛾𝑖 | 𝛾 < 𝜔1, 𝑖 < 𝑛⟩ and a sequence ⟨𝑟𝑖 | 𝑖 < 𝑛⟩ such that for all 𝛾 < 𝛾′ < 𝜔1 and 𝑖 < 𝑗 < 𝑛:

∙ 𝑟𝑖 ⊎ 𝑥𝛾𝑖 ∈ 𝒳𝑖;

∙ sup(𝑟0 ∪ · · · ∪ 𝑟𝑛−1) < min(𝑥𝛾𝑖 ) ≤ max(𝑥𝛾𝑖 ) < min(𝑥𝛾𝑗 ) ≤ max(𝑥𝛾𝑗 ) < min(𝑥𝛾
′

0 ).

For all 𝛾 < 𝜔1, denote 𝑎𝛾 := 𝑥𝛾0 and 𝑏𝛾 := 𝑥𝛾1 ⊎ · · · ⊎ 𝑥𝛾𝑛−1. By the pigeonhole principle, let us fix an
uncountable Γ ⊆ 𝜔1 along with 𝑘, 𝑙, 𝜄, 𝜖 < 𝜔 such that for all 𝛾 ∈ Γ:

∙ |𝑎𝛾 | = 𝑘 and |𝑏𝛾 | = 𝑙;
∙ 𝜓𝛼(𝑓𝜄(𝛼)) = 𝛿 for all 𝛼 ∈ 𝑎𝛾 ;
∙ max(osc “[𝑟0 ∪ · · · ∪ 𝑟𝑛−1 ∪ 𝑎𝛾 ∪ 𝑏𝛾 ]2) = 𝜖.

Put 𝑠 := 𝜖 + 1 + 2𝜄 + 1. Consider 𝒜 := {𝑎𝛾 | 𝛾 ∈ Γ} and ℬ := {𝑏𝛾 | 𝛾 ∈ Γ}. As 𝒜 ⊆ [𝜔1]𝑘 and
ℬ ⊆ [𝜔1]𝑙 are uncountable families, each consisting of pairwise disjoint sets, we may pick 𝑎 ∈ 𝒜 and a
sequence ⟨𝑏𝑚 | 𝑚 < 𝑠⟩ of elements in ℬ such that for all 𝑚 < 𝑠:

14For a light introduction to pp(𝜆), see [22].
15Here, 𝑎(𝑖) stands for the unique 𝛼 ∈ 𝑎 to satisfy |𝑎 ∩ 𝛼| = 𝑖. The interpretation of 𝑏𝑚(𝑗) is similar.
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∙ max(𝑎) < min(𝑏𝑚), and
∙ osc(𝑎(𝑖), 𝑏𝑚(𝑗)) = osc(𝑎(𝑖), 𝑏0(𝑗)) +𝑚 for all 𝑖 < 𝑘 and 𝑗 < 𝑙.

Write m := max(osc([𝑎× 𝑏0])). Let 𝑡 be the unique natural number to satisfy 0 ≤ 𝑡 < 2𝜄 and m+ 𝜖+ 1 ≡ 𝑡
(mod 2𝜄). Put 𝑚 := 𝜖 + 1 + 2𝜄 − 𝑡. Then 𝑚 < 𝑠 and 𝜄 is the maximal natural number to satisfy that 2𝜄

divides m +𝑚.
Fix 𝛾 < 𝛾′ < 𝜔1 such that 𝑎 = 𝑎𝛾 and 𝑏𝑚 = 𝑏𝛾

′
. Write 𝑥̄0 := 𝑟0 ⊎ 𝑥𝛾0 , and for all nonzero 𝑖 < 𝑛, write

𝑥̄𝑖 := 𝑟𝑖 ⊎ 𝑥𝛾
′

𝑖 . Clearly, ⟨𝑥̄𝑖 | 𝑖 < 𝑛⟩ ∈
∏︀

𝑖<𝑛 𝒳𝑖, and ⟨sup(𝑥̄𝑖) | 𝑖 < 𝑛⟩ is strictly increasing. Next, suppose
that we are given 𝑧 satisfying ⋃︁

𝑖<𝑛

⎛⎝𝑥̄𝑖 ∖ ⋃︁
𝑗∈𝑛∖{𝑖}

𝑥̄𝑗

⎞⎠ ⊆ 𝑧 ⊆
⋃︁
𝑖<𝑛

𝑥̄𝑖.

Claim 3.6.1. 𝑀𝑧 is a nonempty subset of 𝑎× 𝑏𝑚, and osc(𝛼, 𝛽) = m +𝑚 for all ⟨𝛼, 𝛽⟩ ∈𝑀𝑧.

Proof. Let ⟨𝛼, 𝛽⟩ ∈ [𝑧]2 be arbitrary. As
⋃︀

𝑖<𝑛 𝑥̄𝑖 =
(︀⋃︀

𝑖<𝑛 𝑟𝑖
)︀
⊎ 𝑎𝛾 ⊎ 𝑏𝛾′

, we consider the following cases:

(1) Suppose that 𝛼 ∈
(︀⋃︀

𝑖<𝑛 𝑟𝑖
)︀
.

By 𝛽 ∈ (𝑟0 ∪ · · · ∪ 𝑟𝑛−1 ∪ 𝑎𝛾 ∪ 𝑏𝛾′
), we have osc(𝛼, 𝛽) ≤ 𝜖.

(2) Suppose that 𝛼 ∈ 𝑎𝛾 .
(a) If 𝛽 ∈ (𝑟0 ∪ · · · ∪ 𝑟𝑛−1 ∪ 𝑎𝛾), then osc(𝛼, 𝛽) ≤ 𝜖;

(b) If 𝛽 ∈ 𝑏𝛾
′
, then ⟨𝛼, 𝛽⟩ ∈ 𝑎 × 𝑏𝑚, so that writing 𝑖 := 𝑎 ∩ 𝛼 and 𝑗 := 𝑏𝑚 ∩ 𝛽, we have

osc(𝛼, 𝛽) = osc(𝑎(𝑖), 𝑏𝑚(𝑗)) = osc(𝑎(𝑖), 𝑏0(𝑗)) +𝑚 ≥ 𝑚 > 𝜖.

(3) Suppose that 𝛼 ∈ 𝑏𝛾
′
.

(a) If 𝛽 ∈ 𝑎𝛾 , then 𝛼 > 𝛽 which gives a contradiction to ⟨𝛼, 𝛽⟩ ∈ [𝑧]2;

(b) If 𝛽 ∈ 𝑟0 ∪ · · · ∪ 𝑟𝑛−1 ∪ 𝑏𝛾
′
, then osc(𝛼, 𝛽) ≤ 𝜖.

Finally, by

𝑧 ⊇
⋃︁
𝑖<𝑛

⎛⎝𝑥̄𝑖 ∖ ⋃︁
𝑗∈𝑛∖{𝑖}

𝑥̄𝑗

⎞⎠ ⊇

(︃⋃︁
𝑖<𝑛

𝑥̄𝑖 ∖
⋃︁
𝑖<𝑛

𝑟𝑖

)︃
,

we have 𝑎𝛾×𝑏𝛾′ ⊆ [𝑧]2, so that case (2)(b) is indeed feasible, and 𝑀𝑧 is a nonempty subset of 𝑎𝛾×𝑏𝛾′
= 𝑎×𝑏𝑚.

It follows that 𝑀𝑧 = {⟨𝛼, 𝛽⟩ ∈ 𝑎× 𝑏𝑚 | osc(𝛼, 𝛽) = m +𝑚}. �

Let ⟨𝛼, 𝛽⟩ ∈ 𝑀𝑧 be arbitrary. By the choice of 𝑚, we know that 𝜄 is the maximal natural number to
satisfy that 2𝜄 divides m +𝑚, and hence 𝑑(𝑧) = 𝜓𝛼(𝑓𝜄(𝛼)) = 𝛿, as sought. �

Corollary 3.7. Suppose that 𝜅 is a regular uncountable cardinal that admits a nonreflecting stationary set
(e.g., 𝜅 is the successor of an infinite regular cardinal). Then:

∙ S*(𝜅, 𝜅, 𝜔) holds. In particular:
∙ There exists a colouring 𝑑 : [𝜅]<𝜔 → 𝜅 such that for every 𝒳 ⊆ [𝜅]<𝜔 of size 𝜅 and every colour
𝛿 < 𝜅, there exist two distinct 𝑥, 𝑦 ∈ 𝒳 satisfying 𝑑(𝑥 ∪ 𝑦) = 𝛿.

Proof. For 𝜅 = ℵ1, use Theorem 3.6. For 𝜅 > ℵ1, use Lemma 3.4 together with Fact 3.5(3). �

Note that the second bullet of the preceding generalizes the celebrated result from [33, p. 285] asserting
that 𝜅9 [𝜅]2𝜅 holds for every regular uncountable cardinal 𝜅 that admits a nonreflecting stationary set.

As colouring of the real line is of a special interest, and as the results so far only shed a limited amount
of light on cardinals of the form 2𝜆, our next task is proving the following.

Theorem 3.8. Suppose that 𝜆 is an infinite cardinal satisfying 2<𝜆 = 𝜆. Then S(cf(2𝜆), 𝜔) holds.

Proof. By 2<𝜆 = 𝜆 and a classic theorem of Sierpiński, there exists a linear ordering of size 2𝜆 with a dense
subset of size 𝜆. Then, by Theorem 3 of [32] (independently, also by the main result of [3]), we may fix a
linear order (𝐿,C) of size 𝜅 := cf(2𝜆) which is 𝜅-entangled. The latter means that for every 𝜇 < 𝜔, every
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Ω ⊆ 𝜇, and every injective sequence ⟨𝑓𝛼 : 𝜇 → 𝐿 | 𝛼 < 𝜅⟩ of order-preserving maps from (𝜇,∈) to (𝐿,C),
with pairwise disjoint images, there exist 𝛼 < 𝛽 < 𝜅 such that for all 𝜄 < 𝜇: 𝑓𝛼(𝜄)C 𝑓𝛽(𝜄) iff 𝜄 ∈ Ω.16

Fix a sequence of injections ⟨𝑙𝛼 : 𝜔 → 𝐿 | 𝛼 < 𝜅⟩ such that Im(𝑙𝛼) ∩ Im(𝑙𝛽) = ∅ for all 𝛼 < 𝛽 < 𝜅. Define
a colouring 𝑐 : [𝜅]2 → 𝜔 as follows. For all 𝛼 < 𝛽 < 𝜅, if there exists some 𝜏 < 𝜔 such that 𝑙𝛼(𝜏)C 𝑙𝛽(𝜏), let
𝑐(𝛼, 𝛽) be the least such 𝜏 . Otherwise, let 𝑐(𝛼, 𝛽) := 0.

By 𝜅 ≤ 2𝜆, let ⟨𝑔𝛼 : 𝜆 → 2 | 𝛼 < 𝜅⟩ be a sequence of pairwise distinct functions. For all 𝛼 < 𝛽 < 𝜅,
let ∆(𝛼, 𝛽) := min{𝜀 < 𝜆 | 𝑔𝛼(𝜀) ̸= 𝑔𝛽(𝜀)} . Now, to define 𝑑 : [𝜅]<𝜔 → 𝜔, let 𝑧 ∈ [𝜅]<𝜔 be arbitrary. If
𝑀𝑧 := {⟨𝛼, 𝛽⟩ ∈ [𝑧]2 | ∆(𝛼, 𝛽) = sup(∆“[𝑧]2)} is nonempty, then let 𝑑(𝑧) := 𝑐(𝛼, 𝛽) for an arbitrary choice
of ⟨𝛼, 𝛽⟩ from 𝑀𝑧. Otherwise, let 𝑑(𝑧) := 0.

To see that 𝑑 witnesses S(𝜅, 𝜔), suppose that we are given a 𝜅-sized family 𝒳 ⊆ [𝜅]<𝜔 and a prescribed
colour 𝛿 < 𝜔. By the ∆-system lemma, we may find a sequence ⟨𝑎𝛾 | 𝛾 < 𝜅⟩ along with 𝑟 ∈ [𝜅]<𝜔 and 𝑚 < 𝜔
such that for all 𝛾 < 𝛾′ < 𝜅:

∙ |𝑎𝛾 | = 𝑚;
∙ 𝑟 ⊎ 𝑎𝛾 ∈ 𝒳 ;
∙ sup(𝑟) < min(𝑎𝛾) ≤ max(𝑎𝛾) < min(𝑎𝛾′).

For each 𝛾 < 𝜅, let 𝑓𝛾 : 𝑚(𝛿 + 1) → 𝐿 denote the unique order-preserving map from (𝑚(𝛿 + 1),∈) to
(𝐿,C) such that Im(𝑓𝛾) = {𝑙𝛼(𝜏) | 𝛼 ∈ 𝑎𝛾 , 𝜏 ≤ 𝛿}. Also, fix some enumeration {𝑎𝛾(𝑗) | 𝑗 < 𝑚} of 𝑎𝛾 .

Next, by an iterated application of the pigeonhole principle, let us fix Γ ∈ [𝜅]𝜅 together with 𝜖 < 𝜆,
𝑡 : 𝑚→ (𝜖+1)2 and ℎ : 𝑚× (𝛿 + 1) ↔ 𝑚(𝛿 + 1) such that for all 𝛾 ∈ Γ:

∙ max(∆“[𝑟 ⊎ 𝑎𝛾 ]2) = 𝜖;
∙ ⟨𝑔𝑎𝛾(𝑗) � (𝜖+ 1) | 𝑗 < 𝑚⟩ = 𝑡;17

∙ 𝑓𝛾(ℎ(𝑗, 𝜏)) = 𝑙𝑎𝛾(𝑗)(𝜏) for all 𝑗 < 𝑚 and 𝜏 ≤ 𝛿.

Put Ω := ℎ[𝑚×{𝛿}]. As (𝐿,C) is 𝜅-entangled, let us pick 𝛾 < 𝛾′ both from Γ such that for all 𝜄 < 𝑚(𝛿+1):
𝑓𝛾(𝜄)C 𝑓𝛾′(𝜄) iff 𝜄 ∈ Ω. Write 𝑥 := 𝑟⊎𝑎𝛾 and 𝑦 := 𝑟⊎𝑎𝛾′ . Clearly, 𝑥, 𝑦 are two distinct elements of 𝒳 . Next,
suppose that we are given 𝑧 satisfying 𝑥△ 𝑦 ⊆ 𝑧 ⊆ 𝑥 ∪ 𝑦.

Claim 3.8.1. 𝑀𝑧 is a nonempty subset of {⟨𝑎𝛾(𝑗), 𝑎𝛾′(𝑗)⟩ | 𝑗 < 𝑚}.

Proof. Let ⟨𝛼, 𝛽⟩ ∈ [𝑧]2 be arbitrary. As 𝑥 ∪ 𝑦 = 𝑟 ⊎ 𝑎𝛾 ⊎ 𝑎𝛾′ , we consider the following cases:

(1) Suppose that 𝛼 ∈ 𝑟.
By 𝛽 ∈ 𝑟 ⊎ 𝑎𝛾 ⊎ 𝑎𝛾′ , we have ∆(𝛼, 𝛽) ≤ 𝜖.

(2) Suppose that 𝛼 ∈ 𝑎𝛾 .
(a) If 𝛽 ∈ (𝑟 ⊎ 𝑎𝛾), then ∆(𝛼, 𝛽) ≤ 𝜖;
(b) If 𝛽 ∈ 𝑎𝛾′ , then let 𝑗𝛼, 𝑗𝛽 < 𝑚 be such that 𝛼 = 𝑎𝛾(𝑗𝛼) and 𝛽 = 𝑎𝛾′(𝑗𝛽). There are two cases

to consider:
(i) If 𝑗𝛼 = 𝑗𝛽 , then 𝑔𝛼 � (𝜖+ 1) = 𝑔𝑎𝛾(𝑗𝛼) � (𝜖+ 1) = 𝑡(𝑗𝛼) = 𝑡(𝑗𝛽) = 𝑔𝑎𝛾′ (𝑗𝛽) � (𝜖+ 1) = 𝑔𝛽 �

(𝜖+ 1), so that ∆(𝛼, 𝛽) > 𝜖;
(ii) If 𝑗𝛼 ̸= 𝑗𝛽 , then 𝑔𝛼 � (𝜖+ 1) = 𝑡(𝑗𝛼) = 𝑔𝑎𝛾′ (𝑗𝛼) � (𝜖+ 1), and hence

∆(𝛼, 𝑎𝛾′(𝑗𝛼)) > 𝜖 = max(∆“[𝑎𝛾′ ]2) ≥ ∆(𝑎𝛾′(𝑗𝛼), 𝛽),

so that ∆(𝛼, 𝛽) ≤ 𝜖.
(3) Suppose that 𝛼 ∈ 𝑎𝛾′ .

(a) If 𝛽 ∈ 𝑎𝛾 , then 𝛼 > 𝛽 which gives a contradiction to ⟨𝛼, 𝛽⟩ ∈ [𝑧]2;
(b) If 𝛽 ∈ 𝑟 ⊎ 𝑎𝛾′ , then ∆(𝛼, 𝛽) ≤ 𝜖.

Finally, by 𝑧 ⊇ (𝑥△ 𝑦) = 𝑎𝛾 ⊎ 𝑎𝛾′ , we have 𝑎𝛾 × 𝑎𝛾′ ⊆ [𝑧]2, so that case (2)(b)(i) is indeed feasible. �

As Ω = ℎ[𝑚×{𝛿}], we have 𝑓𝛾(𝜄)C𝑓𝛾′(𝜄) iff 𝜄 ∈ ℎ[𝑚×{𝛿}]. Let 𝑗 < 𝑚 be such that 𝑑(𝑧) = 𝑐(𝑎𝛾(𝑗), 𝑎𝛾′(𝑗)).
Then, for all 𝜏 ≤ 𝛿: 𝑓𝛾(ℎ(𝑗, 𝜏)) C 𝑓𝛾′(ℎ(𝑗, 𝜏)) iff ℎ(𝑗, 𝜏) ∈ ℎ[𝑚 × {𝛿}] iff 𝜏 = 𝛿. That is, for all 𝜏 ≤ 𝛿:

16Note that the definition of a (𝜅, 𝜇)-entangled ordering in [32] only guarantees “𝛼 ̸= 𝛽”, however, “𝛼 < 𝛽” can be ensured
by appealing to the (𝜅, 2𝜇)-entangledness of the ordering.

17Note that |𝑚((𝜖+1)2)| ≤ 2<𝜆 = 𝜆 < 𝜅.
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𝑙𝑎𝛾(𝑗)(𝜏)C𝑙𝑎𝛾′ (𝑗)(𝜏) iff 𝜏 = 𝛿. Recalling the definition of 𝑐, we altogether infer that 𝑑(𝑧) = 𝑐(𝑎𝛾(𝑗), 𝑎𝛾′(𝑗)) = 𝛿,

as sought. �

Corollary 3.9. For every successor ordinal 𝛼:

(1) S(i𝛼, 𝜔) and S*(ℵ𝛼, cf(ℵ𝛼−1), 𝜔) hold;18

(2) if i𝛼 = ℵ𝛼, then S*(ℵ𝛼,ℵ𝛼, 𝜔) holds.19

For every limit ordinal 𝛼:

(3) if cf(𝛼) is uncountable and admitting a nonreflecting stationary set, then S*(ℵ𝛼, cf(𝛼), 𝜔) holds;
(4) if cf(𝛼) is a successor of an infinite cardinal of cofinality 𝜃, then S*(ℵ𝛼, 𝜃, 𝜔) holds.

Proof. (1) Suppose that 𝛼 = 𝛽 + 1.
Then 𝜆 := i𝛽 is a strong limit cardinal, and hence 2<𝜆 = 𝜆. So, by Theorem 3.8, S(cf(2𝜆), 𝜔)

holds. But, then, by Proposition 3.3, S(2𝜆, 𝜔) holds. That is, S(i𝛼, 𝜔) holds.
As for the second part of Clause (1):
I If ℵ𝛽 is a regular cardinal, then by Corollary 3.7, S*(ℵ𝛼,ℵ𝛼, 𝜔) holds.
I If ℵ𝛽 is a singular cardinal, then by Fact 3.5(7), Pr1(ℵ𝛼,ℵ𝛼, cf(ℵ𝛽), cf(ℵ𝛽)) holds. Then, by

Lemma 3.4, S*(ℵ𝛼, cf(ℵ𝛽), 𝜔) holds.
(2) Suppose that 𝛼 = 𝛽 + 1 and i𝛼 = ℵ𝛼. Write 𝜆 := ℵ𝛽 .

I If 𝜆 is a regular cardinal, then by Corollary 3.7, S*(ℵ𝛼,ℵ𝛼, 𝜔) holds.
I If 𝜆 is a singular cardinal, then pp(𝜆) ≤ 2𝜆 = 2ℵ𝛽 ≤ 2i𝛽 = i𝛼 = ℵ𝛼 = 𝜆+, and then by

Fact 3.5(5), Pr1(𝜆+, 𝜆+, 𝜆+, cf(𝜆)) holds. So, by Lemma 3.4, S*(ℵ𝛼,ℵ𝛼, 𝜔) holds.
(3) Suppose that cf(𝛼) = 𝜅, where 𝜅 is an uncountable cardinal admitting a nonreflecting stationary set.

By Fact 3.5(3), Pr1(𝜅, 𝜅, 𝜅, 𝜔) holds. Then, by Lemma 3.4, S*(𝜅, 𝜅, 𝜔) holds. As cf(ℵ𝛼) = cf(𝛼) = 𝜅,
we infer from Proposition 3.3 that S*(ℵ𝛼, cf(𝛼), 𝜔) holds.

(4) Suppose that cf(𝛼) = 𝜇+ for some infinite cardinal 𝜇 of cofinality, say, 𝜃. Given Clause (3), we may
assume that 𝜇 is singular. By Fact 3.5(7), Pr1(𝜇+, 𝜇+, 𝜃, 𝜃) holds. Then, by Lemma 3.4, S*(𝜇+, 𝜃, 𝜔)
holds. As cf(ℵ𝛼) = cf(𝛼) = 𝜇+, we infer from Proposition 3.3 that S*(ℵ𝛼, 𝜃, 𝜔) holds. �

Corollary 3.10. For every ordinal 𝛼 such that cf(𝛼) is a successor cardinal, S(i𝛼, 𝜔) holds.

Proof. By Corollary 3.9 and Proposition 3.2. �

Remarks. i. The restriction to cofinality of a successor cardinal is necessary, as it follows from Proposi-
tion 3.2(4) that S(i𝛼, 𝜔) fails for any ordinal 𝛼 satisfying 𝛼→ [𝛼]22.

ii. It is unknown whether the conclusion S(i𝛼, 𝜔) may be replaced by the stronger conclusion S*(i𝛼, 𝜔, 𝜔).
In fact, already whether ZFC implies i1 9 [i1;i1]22 is a longstanding open problem.

4. Colourings for sumsets and bounded finite sums

The main goal of this section is to show that for unboundedly many regular uncountable cardinals 𝜅, if
|𝐺| = 𝜅 then 𝐺9 [𝜅]FS2

𝜅 and even 𝐺9 [𝜅]SuS𝜅 . A minor goal is to prove some no-go theorems.

4.1. Sumsets. We commence with a lemma that will simplify some reasoning concerning sumsets.

Lemma 4.1. Let 𝐺 be a commutative cancellative semigroup of cardinality 𝜅 > 𝜔, let 𝜃 ≤ 𝜅 be an arbitrary
cardinal, and let 𝑐 : 𝐺 −→ 𝜃 be some colouring. Then for each 𝛿 < 𝜃, the following two conditions are
equivalent:

(1) For every 𝑋,𝑌 ⊆ 𝐺 with |𝑋| = |𝑌 | = 𝜅, we have 𝛿 ∈ 𝑐[𝑋 + 𝑌 ] (that is, there are 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌
such that 𝑐(𝑥+ 𝑦) = 𝛿).

(2) For every integer 𝑛 ≥ 2 and 𝜅-sized sets 𝑋1, . . . , 𝑋𝑛 ⊆ 𝐺, we have 𝛿 ∈ 𝑐[𝑋1 + · · · + 𝑋𝑛] (that is,
there are 𝑥1 ∈ 𝑋1, . . . , 𝑥𝑛 ∈ 𝑋𝑛 such that 𝑐(𝑥1 + · · · + 𝑥𝑛) = 𝛿).

18Note that if ℵ𝛼−1 is regular, then S*(ℵ𝛼, cf(ℵ𝛼−1), 𝜔) is equivalent to S*(ℵ𝛼,ℵ𝛼, 𝜔).
19Note that GCH is equivalent to the assertion that i𝛼 = ℵ𝛼 for all ordinals 𝛼, and that if ZFC is consistent then so is

ZFC + GCH + every regular uncountable cardinal is of the form ℵ𝛼 for some successor ordinal 𝛼.
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Proof. We focus on the nontrivial implication 1 =⇒ 2.
Proceed by induction on 𝑛 ∈ {2, 3, . . .}. Suppose the statement holds true for a given 𝑛, and suppose

we are given 𝜅-sized sets 𝑋1, . . . , 𝑋𝑛, 𝑋𝑛+1. First, notice that 𝑋1 + · · · + 𝑋𝑛 has cardinality 𝜅 (since the
elements 𝑥1 + · · · + 𝑥𝑛−1 + 𝑦, where the 𝑥𝑖 ∈ 𝑋𝑖 are fixed, and 𝑦 ranges over 𝑋𝑛, are all distinct by
cancellativity). Thus, by our assumption we can find 𝑥1 + · · · + 𝑥𝑛 ∈ 𝑋1 + · · · +𝑋𝑛 and 𝑥𝑛+1 ∈ 𝑋𝑛+1 such
that 𝑐(𝑥1 + · · · + 𝑥𝑛 + 𝑥𝑛+1) = 𝑐((𝑥1 + · · · + 𝑥𝑛) + 𝑥𝑛+1) = 𝛿. �

Theorem 4.2. Suppose that 𝐺 is commutative cancellative semigroup of cardinality, say, 𝜅.
If S*(𝜅, 𝜃, 𝜔) holds, then so does 𝐺9 [𝜅]SuS𝜃 .

Proof. Let 𝑑 : [𝜅]<𝜔 −→ 𝜃 be a witness to S*(𝜅, 𝜃, 𝜔). Using Lemma 2.2, embed 𝐺 into a direct sum⨁︀
𝛼<𝜅𝐺𝛼, with each 𝐺𝛼 a countable abelian group. Then, define 𝑐 : 𝐺→ 𝜃 by stipulating:

𝑐(𝑥) := 𝑑(supp(𝑥)).

While the axiom S*(𝜅, 𝜃, 𝜔) allows to handle any finite number of 𝜅-sized families, we shall take advantage
of Lemma 4.1 that reduces the algebraic problem into looking at sumsets of 2 sets.

Thus, let 𝑋 and 𝑌 be two 𝜅-sized subsets of 𝐺, and let 𝛿 < 𝜃 be arbitrary. Since each 𝑥 ∈ 𝐺 has a
finite support, and each of the 𝐺𝛼 are countable, there are only countably many elements of 𝐺 with a given
support. Therefore, both 𝒳 := {supp(𝑥) | 𝑥 ∈ 𝑋} and 𝒴 := {supp(𝑦) | 𝑦 ∈ 𝑌 } are 𝜅-sized subfamilies of
[𝜅]<𝜔. Now, as 𝑑 witnesses S*(𝜅, 𝜃, 𝜔), we may pick ⟨𝑥, 𝑦⟩ ∈ 𝑋 × 𝑌 such that 𝑑(𝑧) = 𝛿 whenever

supp(𝑥) △ supp(𝑦) ⊆ 𝑧 ⊆ supp(𝑥) ∪ supp(𝑦),

in particular 𝑧 := supp(𝑥+ 𝑦) satisfies the above equation by Proposition 2.4, and hence 𝑐(𝑥+ 𝑦) = 𝑑(𝑧) =
𝛿. �

Corollary 4.3. Let 𝐺 be any commutative cancellative semigroup of cardinality, say, 𝜆.
If 𝜅 := cf(𝜆) is an uncountable cardinal satisfying at least one of the following conditions:

(1) �(𝜅) holds;
(2) 𝜅 admits a non-reflecting stationary set (e.g., 𝜅 = 𝜇+ for 𝜇 regular);
(3) 𝜅 = 𝜇+, 𝜇 is singular, and pp(𝜇) = 𝜇+ (e.g., 𝜇cf(𝜇) = 𝜇+),

then 𝐺9 [𝜆]SuS𝜅 holds.

Proof. By Lemma 3.4, Fact 3.5 and Theorem 3.6, any of the above hypotheses imply that S*(𝜅, 𝜅, 𝜔) holds.
Then by Proposition 3.3, S*(𝜆, 𝜅, 𝜔) holds, as well. Now, appeal to Theorem 4.2. �

Corollary 4.4. It is consistent with ZFC that for every infinite commutative cancellative semigroup 𝐺,
letting 𝜅 := |𝐺|, 𝐺9 [𝜅]SuScf(𝜅) holds iff cf(𝜅) > 𝜔.

Proof. If there exists a weakly compact cardinal in Gödel’s constructible universe 𝐿, then let 𝜇 denote the
least such one and work in 𝐿𝜇. Otherwise, work in 𝐿. In both cases, we end up with a model of ZFC in
which �(𝜅) holds for every regular uncountable cardinal 𝜅 [16, Theorem 6.1], and in which every singular
cardinal is a strong limit [11]. Now, there are three cases to consider:

I If cf(𝜅) > 𝜔, then �(cf(𝜅)) holds and then 𝐺9 [𝜅]SuScf(𝜅) holds as a consequence of Corollary 4.3.

I If 𝜅 > cf(𝜅) = 𝜔 and 𝐺 9 [𝜅]SuScf(𝜅) holds, then so does 𝐺 9 [𝜅]FS2
𝜔 . But then by Proposition 4.10

below, 𝜅9 [𝜅]2𝜔 holds, contradicting Theorem 54.1 of [5] and the fact that 𝜅 is a strong limit.
I If 𝜅 = 𝜔 and 𝐺9 [𝜅]SuScf(𝜅) holds, then so does 𝐺9 [𝜔]FS2 , contradicting Hindman’s theorem. �

We conclude this subsection with an analogue of Corollary 2.8 in the context of sumsets:

Corollary 4.5. For every infinite cardinal 𝜆, and every cardinal 𝜃, the following are equivalent:

(1) 𝜆+ 9 [𝜆+]2𝜃 holds;
(2) 𝐺9 [𝜆+]SuS𝜃 holds for every commutative cancellative semigroup 𝐺 of cardinality 𝜆+;
(3) 𝐺9 [𝜆+]SuS𝜃 holds for some commutative cancellative semigroup 𝐺 of cardinality 𝜆+.
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Proof. Let 𝜆 and 𝜃 be as above. If 𝜆 is regular, then all of the three clauses hold as a consequence of
Corollary 3.7 and Theorem 4.2.

Next, as the implication (2) =⇒ (3) is trivial, and the implication (3) =⇒ (1) follows immediately from
Proposition 4.10 below, let us suppose that 𝜆 is a singular cardinal for which 𝜆+ 9 [𝜆+]2𝜃 holds.

Then, by [23, Theorem 1], Pr1(𝜆+, 𝜆+, 𝜃, cf(𝜆)) holds. Then, by Lemma 3.4 and Theorem 4.2, 𝐺9 [𝜆+]SuS𝜃

holds for every commutative cancellative semigroup 𝐺 of cardinality 𝜆+. �

4.2. Finite sums. An immediate corollary to Theorem 4.2 reads as follows.

Corollary 4.6. Suppose that 𝐺 is commutative cancellative semigroup of cardinality, say, 𝜅.
If S*(𝜅, 𝜃, 𝜔) holds, then so does 𝐺9 [𝜅]FS𝑛

𝜃 for all integers 𝑛 ≥ 2.

Our next goal is to derive statements about FS𝑛 from the weaker principle S(𝜅, 𝜃). We first deal with the
case where 𝑛 = 2.

Theorem 4.7. Suppose that 𝐺 is commutative cancellative semigroup of cardinality, say, 𝜅.
If S(𝜅, 𝜃) holds, then so does 𝐺9 [𝜅]FS2

𝜃 .20

Proof. Let 𝑑 : [𝜅]<𝜔 −→ 𝜃 be a witness to S(𝜅, 𝜃). Using Lemma 2.2, embed 𝐺 into a direct sum
⨁︀

𝛼<𝜅𝐺𝛼,
with each 𝐺𝛼 a countable abelian group. Then, define 𝑐 : 𝐺→ 𝜃 by stipulating:

𝑐(𝑥) := 𝑑(supp(𝑥)).

Let 𝑋 ∈ [𝐺]𝜅 be arbitrary. Since each 𝑥 ∈ 𝐺 has a finite support, and there are only countably many
elements of 𝐺 with a given support, we have that 𝒳 := {supp(𝑥) | 𝑥 ∈ 𝑋} is a subfamily of [𝜅]<𝜔 of size
𝜅. Let 𝛿 < 𝜃 be arbitrary. As 𝑑 witness S(𝜅, 𝜃), we may now pick two distinct 𝑥, 𝑦 ∈ 𝑋 such that 𝑑(𝑧) = 𝛿
whenever supp(𝑥) △ supp(𝑦) ⊆ 𝑧 ⊆ supp(𝑥) ∪ supp(𝑦). In particular, by Proposition 2.4, we have that
supp(𝑥+ 𝑦) is such a 𝑧, and therefore 𝑐(𝑥+ 𝑦) = 𝑑(supp(𝑥+ 𝑦)) = 𝛿. �

We would next like to obtain the corresponding result for FS𝑛, with 𝑛 > 2. This will, however, not be
very hard under the right circumstances, as the following lemma shows. The idea for the proof of this lemma
is adapted from [18]. Recall that, given an 𝑛 ∈ N, an abelian group 𝐺 is said to be 𝑛-divisible if for every
𝑥 ∈ 𝐺 there exists a 𝑧 ∈ 𝐺 such that 𝑛𝑧 = 𝑥 (thus, being divisible is the same as being 𝑛-divisible for every
𝑛 ∈ N).

Lemma 4.8. Let 𝑛 ∈ N, and let 𝐺 be an 𝑛-divisible abelian group. For every 𝜆, 𝜃, if 𝑐 is a colouring

witnessing 𝐺9 [𝜆]FS𝑛

𝜃 , then 𝑐 witnesses 𝐺9 [𝜆]
FS𝑛+1

𝜃 , as well.

Proof. Suppose that 𝐺 is an 𝑛-divisible abelian group such that 𝐺9 [𝜆]FS𝑛

𝜃 holds, as witnessed by a colouring
𝑐 : 𝐺 −→ 𝜃. To see that it is also the case that for all 𝑋 ⊆ 𝐺 with |𝑋| = 𝜆, 𝑐[FS𝑛+1(𝑋)] = 𝜃, grab an
arbitrary 𝑋 ⊆ 𝐺 with |𝑋| = 𝜆. Pick an element 𝑥 ∈ 𝑋, and use 𝑛-divisibility to obtain an element 𝑧 ∈ 𝐺
such that 𝑛𝑧 = 𝑥. Now, let

𝑌 := {𝑦 + 𝑧 | 𝑦 ∈ 𝑋 ∖ {𝑥}} .
Then 𝑌 is a subset of 𝐺 of cardinality 𝜆, so that for each colour 𝛿 < 𝜃 we can find 𝑛 distinct elements
𝑦1 + 𝑧, . . . , 𝑦𝑛 + 𝑧 ∈ 𝑌 such that the sum

(𝑦1 + 𝑧) + · · · + (𝑦𝑛 + 𝑧) = 𝑦1 + · · · + 𝑦𝑛 + 𝑛𝑧 = 𝑦1 + · · · + 𝑦𝑛 + 𝑥

is an element of FS𝑛+1(𝑋) that receives colour 𝛿. �

The preceding lemma yields a fairly general result concerning FS𝑛, where the main piece of information
seems to be the cardinality of the commutative cancellative semigroup 𝐺, rather than the semigroup itself.

Corollary 4.9. Suppose that 𝜃 ≤ 𝜅 are cardinals such that 𝐺9 [𝜆]FS2

𝜃 holds for all commutative cancellative
semigroups of cardinality 𝜅.

Then, for every commutative cancellative semigroup 𝐺 of cardinality 𝜅, there exists a colouring 𝑐 that
simultaneously witnesses 𝐺9 [𝜆]FS𝑛

𝜃 for all integers 𝑛 ≥ 2.

20Note that when 𝐺 is the abelian group ([𝜅]<𝜔 ,△), then a colouring witnessing 𝐺 9 [𝜅]FS2
𝜃 is almost a witness to S(𝜅, 𝜃).
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Proof. Let 𝐺 be any commutative cancellative semigroup 𝐺 with |𝐺| = 𝜅. By Lemma 2.2, we may embed 𝐺
into a direct sum 𝐺′ =

⨁︀
𝛼<𝜅𝐺𝛼, where each 𝐺𝛼 is countable and divisible. This implies that 𝐺′ is divisible,

and |𝐺′| = 𝜅. Thus, by our hypothesis, we may take a colouring 𝑑 : 𝐺′ −→ 𝜃 witnessing 𝐺′ 9 [𝜆]FS2

𝜃 .
Since 𝐺′ is divisible, we can use Lemma 4.8, to inductively prove, for every integer 𝑛 ≥ 2, that 𝑑 witnesses
𝐺′ 9 [𝜆]FS𝑛

𝜃 . Therefore 𝑐 := 𝑑 � 𝐺 witnesses the statement 𝐺9 [𝜆]FS𝑛

𝜃 for all integers 𝑛 ≥ 2. �

We now move to proving no-go propositions. These will be obtained using the following simple proxy:

Proposition 4.10. If 𝐺 is a commutative semigroup satisfying 𝐺 9 [𝜆]FS𝑛

𝜃 , then 𝜅 9 [𝜆]𝑛𝜃 holds, for
𝜅 := |𝐺|.

Proof. Fix an injective enumeration {𝑥𝛼 | 𝛼 < 𝜅} of a commutative semigroup 𝐺, along with a colouring

𝑐 : 𝐺 −→ 𝜃 witnessing 𝐺9 [𝜆]FS𝑛

𝜃 . Define a colouring 𝑑 : [𝜅]𝑛 −→ 𝜃 by stipulating:

𝑑(𝛼1, . . . , 𝛼𝑛) = 𝑐(𝑥𝛼1 + · · · + 𝑥𝛼𝑛).

Now, given 𝑌 ∈ [𝜅]𝜆, we have that {𝑥𝛼 | 𝛼 ∈ 𝑌 } is a 𝜆-sized subset of 𝐺 and hence for every colour 𝛿 < 𝜃,
we may find 𝛼1, . . . , 𝛼𝑛 in 𝑌 such that 𝑐(𝑥𝛼1

+ · · · + 𝑥𝛼𝑛
) = 𝛿, so that 𝑑(𝛼1, . . . , 𝛼𝑛) = 𝛿. �

Corollary 4.11. There exists an uncountable cardinal 𝜅 such that for every commutative semigroup 𝐺 of
cardinality 𝜅, 𝐺9 [𝜅]FS𝑛

𝜔 fails for all 𝑛 < 𝜔.
In particular, there exists an uncountable abelian group 𝐺 for which 𝐺9 [𝜔1]FS𝑛

𝜔 fails for all 𝑛 < 𝜔.

Proof. The statement holds true for 𝜅 := i𝜔, as otherwise, by Proposition 4.10, there exists some 𝑛 < 𝜔 for
which i𝜔 9 [i𝜔]𝑛𝜔 holds, contradicting Theorem 54.1 of [5].

In particular, by picking any abelian group 𝐺 of cardinality i𝜔, we infer that 𝐺 9 [𝜔1]FS𝑛
𝜔 fails for all

𝑛 < 𝜔. �

Corollary 4.12. Suppose that 𝜅 is a weakly compact cardinal.
Then in the generic extension for adding 𝜅 many Cohen reals, for every commutative semigroup 𝐺 of size

continuum, 𝐺9 [c]FS𝑛
𝜔1

fails for every integer 𝑛 ≥ 2.

Proof. Let us remind the reader that as 𝜅 is weakly compact, 𝜅 is strongly inaccessible and satisfies that for
every 𝜃 < 𝜅, every positive integer 𝑛, and every colouring 𝑑 : [𝜅]𝑛 → 𝜃, there exists some 𝐻 ∈ [𝜅]𝜅 such that
𝑑 � [𝐻]𝑛 is constant.

Let P be the notion of forcing for adding 𝜅 many Cohen reals. By Proposition 4.10, it suffices to show
that in 𝑉 P, we have 𝜅→ [𝜅]𝑛𝜔1

for every integer 𝑛 ≥ 2.

Let 𝑐̊ be a P-name for an arbitrary colouring 𝑐 : [𝜅]𝑛 → 𝜔1 in 𝑉 P. Working in 𝑉 , define a colouring
𝑑 : [𝜅]𝑛 → [𝜔1]≤𝜔 by stipulating:

𝑑(𝛼1, . . . , 𝛼𝑛) := {𝛿 < 𝜔1 | ∃𝑝 ∈ P[𝑝 
 “̊𝑐(𝛼1, . . . , 𝛼𝑛) = 𝛿”]}.
Since P is ccc, the range of 𝑑 indeed consists of countable subsets of 𝜔1. As 𝜅 is weakly compact,⃒⃒

[𝜔1]≤𝜔
⃒⃒
< 𝜅 and we may pick some 𝐻 ∈ [𝜅]𝜅 such that 𝑑“[𝐻]𝑛 is a singleton, say, {𝐴}. Evidently,


 “̊𝑐[[𝐻̌]𝑛̌] ⊆ 𝐴”.

As 𝐴 is countable and P does not collapse cardinals, P forces that 𝑐̊“[𝐻̌]𝑛̌ omits at least one colour. �

5. Some corollaries concerning the real line

Hindman, Leader and Strauss [13, Theorem 3.2] proved that R 9 [c]FS𝑛
2 holds for every integer 𝑛 ≥ 2. It

turns out that it is possible to increase the number of colours from 2 to 𝜔:

Corollary 5.1. R 9 [c]FS𝑛
𝜔 holds for every integer 𝑛 ≥ 2.

Proof. As |R| = c = 2ℵ0 = 2i0 = i1, we infer from Corollary 3.10 that S(c, 𝜔) holds. Now appeal to
Theorem 4.2 and Corollary 4.9. �

On the grounds of ZFC alone, it is impossible to increase the number of colours to 𝜔1:
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Corollary 5.2. If there exists a weakly compact cardinal, then there exists a model of ZFC in which R 9
[c]FS𝑛

𝜔1
fails for every integer 𝑛 ≥ 2. Furthermore, in this model, c is an inaccessible cardinal which is weakly

compact in Gödel’s constructible universe.

Proof. Suppose that 𝜅 is a weakly compact cardinal. Work in Gödel’s constructible universe, 𝐿. Then 𝜅 is
still a weakly compact cardinal (see [15, Theorem 17.22]), and if P denotes the notion of forcing for adding 𝜅
many Cohen reals, then by Corollary 4.12, the forcing extension 𝐿P is a model in which c is an inaccessible
cardinal that is weakly compact in Gödel’s constructible universe, and R 9 [c]FS𝑛

𝜔1
fails for every integer

𝑛 ≥ 2. �

However, assuming an anti-large cardinal hypothesis, the number of colours may be increased:

Corollary 5.3. Each of the following imply that R 9 [c]SuSc holds:

(1) c = b (e.g., Martin’s Axiom holds);
(2) c is a successor of a regular cardinal (e.g., CH holds);
(3) c is a successor of a singular cardinal of countable cofinality;
(4) c is a regular cardinal that is not weakly compact in Gödel’s constructible universe.

Proof. (1) By Lemma 3.4, Fact 3.5(1), and Theorem 4.2.
(2) By Corollary 4.3(2).
(3) If c = 𝜆+ and cf(𝜆) = 𝜔, then 𝜆cf(𝜆) = c = 𝜆+. Now, appeal to Corollary 4.3(3).
(4) By [33], if 𝜅 is a regular uncountable cardinal which is not a weakly compact cardinal in Gödel’s

constructible universe, then �(𝜅) holds. Now, appeal to Corollary 4.3(1). �

By a theorem of Milliken [19, Theorem 9], CH entails R 9 [c]FS2
𝜔1

. We now derive the same conclusion
(and even with superscript SuS) from an (again, optimal) anti-large cardinal hypothesis:

Corollary 5.4. Each of the following imply that R 9 [c]SuS𝜔1
holds:

(1) c is a successor cardinal (e.g., CH holds);
(2) cf(c) is a successor of a cardinal of uncountable cofinality;
(3) cf(c) is not weakly compact in Gödel’s constructible universe.

Proof. (1) By Corollary 5.3, we may assume that c is a successor of a singular cardinal of uncountable
cofinality 𝜃. Then, By Fact 3.5(7), Lemma 3.4, and Theorem 4.2, R 9 [c]SuS𝜃 holds. In particular,
R 9 [c]SuS𝜔1

holds.

(2) If cf(c) is a successor of a regular cardinal, then by Corollary 3.7, S*(cf(c), cf(c), 𝜔) holds. If cf(c) is
a successor of a singular cardinal of cofinality 𝜃, then, by Fact 3.5(7) and Lemma 3.4, S*(cf(c), 𝜃, 𝜔)
holds. Altogether, if cf(c) is a successor of a cardinal of uncountable cofinality, S*(cf(c), 𝜔1, 𝜔) holds.
So, by Proposition 3.3, S*(c, 𝜔1, 𝜔) holds. By Theorem 4.2, then, R 9 [c]SuS𝜔1

holds.
(3) Let 𝜅 := cf(c). By König’s lemma, 𝜅 is uncountable. By [33], if 𝜅 is a regular uncountable cardinal

which is not a weakly compact cardinal in Gödel’s constructible universe, then �(𝜅) holds. Thus,
by Corollary 4.3(1), R 9 [c]SuS𝜅 holds. In particular, R 9 [c]SuS𝜔1

holds. �

As for FS sets, we have the following optimal results:

Corollary 5.5. The following are equivalent:

∙ R 9 [c]FSc holds;
∙ c is not a Jónsson cardinal.

Proof. Appeal to Corollary 2.8 with 𝜆 = 𝜅 = 𝜃 = c. �

Corollary 5.6. The following are equivalent:

∙ R 9 [𝜔1]FS𝜔1
holds;

∙ (c, 𝜔1)� (𝜔1, 𝜔) fails.

Proof. Appeal to Corollary 2.9 with 𝜅 = c and 𝜃 = 𝜔. �

In particular, if there exists a Kurepa tree with c many branches, then R 9 [𝜔1]FS𝜔1
holds.
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