STRONGLY PRODUCTIVE ULTRAFILTERS ON SEMIGROUPS

DAVID J. FERNANDEZ BRETON AND MARTINO LUPINI

ABSTRACT. We prove that if S is a commutative semigroup with well-founded
universal semilattice or a solvable inverse semigroup with well-founded semi-
lattice of idempotents, then every strongly productive ultrafilter on S is idem-
potent. Moreover we show that any very strongly productive ultrafilter on the
free semigroup with countably many generators is sparse, answering a question
of Hindman and Legette Jones.

1. INTRODUCTION

Let S be a multiplicatively denoted semigroup. If ¥ = (z,),,c,, is a sequence of
elements of S, then the finite products set associated with Z, denoted by FP(Z), is
the set of products (taken in increasing order of indices)

Hl’i c S

i€a
where a ranges among the finite subsets of w. If k € w then FPy(¥) stands for the
FP-set associated with the sequence (5, 4%),c,,- A subset of S is called an FP-set
if it is of the form FP(Z) for some sequence # in S, and an IP-set if it contains an
FP-set (see |12, Definition 16.3]). An ultrafilter p on S (a gentle introduction to
ultrafilters can be found in [2, Appendix B]) is strongly productive as in [9, Section
1]) if it has a basis of FP-sets. This means that for every A € p there is an
FP-set contained in A that is a member of p. When S is an additively denoted
commutative semigroup, then the finite products sets are called finite sums sets or
FS-sets and denoted by FS(Z). Moreover strongly productive ultrafilters are called
in this context strongly summable (see |10, Definition 1.1]).

The concept of strongly summable ultrafilter was first considered in the case
of the semigroup of positive integers in [8] by Hindman upon suggestion of van
Douwen (see also the notes at the end of [12, Chapter 12]). Later Hindman, Pro-
tasov, and Strauss studied in |10] strongly summable ultrafilters on arbitrary abelian
groups. Theorem 2.3 in [10] asserts that any strongly summable ultrafilter on an
abelian group G is idempotent, i.e. an idempotent element of the semigroup com-
pactification SG of G, which can be seen as the collection of all ultrafilters on G.
Similarly, strongly productive ultrafilters on a free semigroup are also idempotent
by |9, Lemma 2.3].
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In this paper we provide a common generalization of these results to a class of
semigroups containing in particular all commutative semigroups with well-founded
universal semilattice, and solvable inverse semigroups with well-founded semilattice
of idempotents. (The notion of universal semilattice of a semigroup is presented in
[6, Section ITI.2]. Inverse semigroups are introduced in [6 Section II.2], and within
these the class of solvable semigroups is defined in [15, Definition 3.2]. Solvable
groups are the solvable inverse semigroups with exactly one idempotent element
by [15, Theorem 3.4].)

Theorem 1.1. If S is either a commutative semigroup with well-founded universal
semilattice, or a solvable inverse semigroup with well-founded semilattice of idem-
potents, then every strongly productive ultrafilter on S is idempotent.

In order to prove Theorem we find it convenient to consider the following
strengthening of the notion of strongly productive ultrafilter:

Definition 1.2. A nonprincipal strongly productive ultrafilter p on a semigroup S
is regular if it contains an element B with the following property: Whenever 7 is a
sequence in S such that FP(Z) C B, the set xo FP1(Z) does not belong to p.

Remark 1.3. Suppose that S, T are semigroups, f : S — T is a semigroup ho-
momorphism, and p is a strongly productive ultrafilter on S. Denote by ¢ the
ultrafilter on T" defined by B € ¢ if and only if f~! [B] € p (note that g is the image
of p under the unique extension of f to a continuous function from the Cech-Stone
compactification of S to the Cech-Stone compactification of T). Tt is easy to see
that ¢ is a strongly productive ultrafilter on T. Moreover if ¢ is regular then p is
regular.

We will show that the notions of strongly productive and regular strongly pro-
ductive ultrafilter coincide for the classes of semigroups considered in Theorem

Theorem 1.4. If S is either a commutative semigroup with well-founded universal
semilattice, or a solvable inverse semigroup with well-founded semilattice of idem-
potents, then every nonprincipal strongly productive ultrafilter on S is regular.

The universal semilattice of a semigroup S is the quotient of S by the smallest
semilattice congruence N on S, see [6 Section III.2]. When S is a commutative
inverse semigroup the set F(S) of idempotent elements of S is a semilattice, and
the restriction to F(S) of the quotient map from S to S /A is an isomorphism from
E(S) onto S /N . Recall also that an ordered set is said to be well-founded if every
nonempty subset has a least element.

Although not using this terminology, there is a well-known argument showing
that any regular strongly productive ultrafilter is idempotent, see for example [12,
Theorem 12.19], or |9, Lemma 2.3]. We reproduce the argument in Lemma
below for convenience of the reader. Using this fact, Theorem will be a direct
consequence of Theorem [T.4}

Lemma 1.5. Suppose that S is a semigroup, and p is an ultrafilter on S. If p is
regular strongly productive, then p is idempotent.

Proof. Fix an element B of p witnessing the fact that p is regular. Suppose that A
is an element of p and 7 is a sequence in S such that FP(Z) C AN B. Since
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and p is nonprincipal and regular, it follows that FP; (&) € p. Using this argument,
one can show by induction that FP, (Z) € p for every n € w. Now notice that, if
= ]],c, % € FP(Z) and n = max(a) + 1, then 2 FP,,(¥) C FP(Z) C A. Therefore
FP, (%) C 271 A and since the former set is an element of p, so is the latter. Hence

FP(Z) C {z €S 2 'A€p}
and so the latter set belongs to p. This shows that p is idempotent. (I

To our knowledge it is currently not known if the existence of a semigroup S
and a nonprincipal strongly productive ultrafilter on S that is not idempotent is
consistent with the usual axioms of set theory. We think that Theorem as well
as [10, Theorem 2.3] provide evidence that for all semigroups S, every strongly
productive ultrafilter on S should be idempotent.

Conjecture 1.6. Every strongly productive ultrafilter on an arbitrary semigroup is
idempotent.

This paper is organized as follows: In Section [2] we introduce the notion of
IP-regular (partial) semigroup and observe that IP-regular semigroups satisfy the
conclusion of Theorem [[L4l In Section [3] we show that commutative cancellative
semigroups are IP-regular. In Section [4] we record some closure properties of the
class of IP-regular semigroups, implying in particular that all (virtually) solvable
groups are IP-regular. In Section [5| we present the proof of Theorem Finally
in Section [f] we discuss sparseness of strongly productive ultrafilters, and show that
every very strongly productive ultrafilter on the free semigroup with countably
many generators is sparse, answering Question 3.8 from [9).

Acknowledgments. We would like to thanks the anonymous referee and Jimmie
Lawson for their comments and remarks.

2. IP-REGULARITY

A partial semigroup as defined in [7, Section 1.3] is a set P endowed with a
partially defined (multiplicatively denoted) operation such that for every a,b,c € P

(ab)e = a(be)

whenever both (ab)c and a(be) are defined. Observe that in particular every semi-
group is a partial semigroup. Moreover any subset of a partial semigroup is natu-
rally endowed with a partial semigroup structure when one considers the restriction
of the operation. An element a of a partial semigroup P is idempotent if a - a is de-
fined and equal to a. The set of idempotent elements of P is denoted by E(P). The
notion of FP-set and IP-set admit straightforward generalizations to the framework
of partial semigroups. If & is a sequence of elements of a partial semigroup P such
that all the products (taken in increasing order of indices)

[~
i€a
where a is a finite subset of w are defined, then the FP-set FP(Z) is the set of all
such products. A subset of P is an IP-set if it contains an FP-set. Analogous to the

case of semigroups, an ultrafilter p on a partial semigroup P is strongly productive if
it is has a basis of FP-sets. A strongly productive ultrafilter is regular if it contains
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a set B with the following property: If ¥ is a sequence in P such that all finite
products from & are defined and belong to B, then zg FP1 (&) does not belong to p.

Definition 2.1. A partial semigroup P is strongly IP-regular if for every sequence
Z in P such that all the finite products from & are defined the set

i) FP1 (f)
is not an IP-set.

Since a subset of a partial semigroup is still a partial semigroup, we can speak
about strongly IP-regular subsets of a partial semigroups, which are just strongly
IP-regular partial semigroups with respect to the induced partial semigroup struc-
ture.

Definition 2.2. A partial semigroup P is IP-regular if P\E (P) is the union of
finitely many strongly IP-regular sets.

It is immediate from the definition that a partial semigroup is IP-regular when-
ever it is the union of finitely many IP-regular subsets (i.e. subsets which are IP-
regular partial semigroups with respect to the induced partial semigroup structure).

Remark 2.3. Any subset of a (strongly) IP-regular partial semigroup is (strongly)
IP-regular. Any finite partial semigroup is strongly IP-regular.

We will show in Section [3| that every cancellative commutative semigroup is IP-
regular. The relevance of the notion of IP-regularity stems from the fact that any
IP-regular group satisfies the conclusion of Theorem The same is in fact true
for any IP-regular partial semigroup with finitely many idempotent elements.

Lemma 2.4. If S is an IP-regular partial semigroup with finitely many idempotent
elements, then every nonprincipal strongly productive ultrafilter on S is regular.

Proof. Suppose that p is a strongly summable ultrafilter on S. Since p is nonprinci-
pal, S\E(S) € p. Given that S is IP-regular, the ultrafilter p must have a strongly
IP-regular member A. It is clear that A witnesses the fact that p is regular. O

The class of IP-regular partial semigroups has interesting closure properties.
We have already observed that a subset of an IP-regular partial semigroup is IP-
regular. Moreover the inverse image of an IP-regular partial semigroup under a
partial homomorphism is IP-regular. Recall that a partial homomorphism from a
partial semigroup P to a partial semigroup @ is a function f : P — @ such that
for every a,b € P such that ab is defined, f(a)f(b) is defined and f(ab) = f(a)f(b)

Lemma 2.5. Suppose that f : P — Q is a partial homomorphism. If Q is IP-
reqular and ! [E(Q)] is IP-reqular, then P is 1P-regular.

Proof. Observe that the image of an IP-set under a partial homomorphism is an
IP-set. It follows that f~1[B] is strongly IP-regular whenever B C Q\E (Q)
is strongly IP-regular. The fact that P is IP-regular follows easily from these
observations. (]

In particular Lemma [2.5| guarantees that the extension of an IP-regular group by
an IP-regular group is IP-regular. More generally one can consider groups admitting
a subnormal series with IP-regular factor groups. Recall that a subnormal series of
a group G is a finite sequence (a) of subgroups of G such that 4g = {1}, 4, = G,
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and A; < A;1q for every i € n. The quotients A;+q /A; for i € n are called factor
groups of the series. Proposition [2.6| can be easily obtained from Lemma by
induction on the length of the subnormal series.

Proposition 2.6. Suppose that G is a group, and (A;)ien is a subnormal series of
G. If the factor groups A;y1 /A; are IP-regular for all i € n, then G is IP-regular.

A consequence of Proposition [2.0] is that solvable groups are IP-regular. This
follows from the facts that solvable groups are exactly those that admit a subnormal
series where all the factor groups are abelian, and that all abelian groups are IP-
regular. The latter fact will be proved in the following section.

3. CANCELLATIVE COMMUTATIVE SEMIGROUPS

Throughout this section all (partial) semigroups are additively denoted and as-
sumed to be cancellative and commutative.

Proposition 3.1. Every cancellative commutative semigroup is 1P-reqular (as in

Definition .
A key role in the proof of Proposition is played by the notion of rank function.

Definition 3.2. A rank function on a cancellative commutative partial semigroup
P is a function p from P to a well-ordered set with the property that if Z is a
sequence in P such that all finite sums from & are defined, then the two following
conditions are satisfied:

(1) The restriction of p to the range {z,|n € w} of the sequence Z is a finite-
to-one function, and
(2) if p(an) > p(xo) for every n € w then xy + FS1 (&) is not an IP-set.

Remark provides an example of a rank function.

Remark 3.3. If p is a function from P to a well order such that p(z+y) =
min {p(z), p(y)} and p(x) # p(y) whenever z,y € P and x + y is defined, then p is
a rank function on A.

The relevance of rank functions for the proof of Proposition [3.1] is stated in
Lemma Recall that the family of IP-sets of a (partial) semigroup P is partition
regular (see |12, Corollary 5.15]). This means that if § is a finite family of subsets
of P and |J§ is an IP-set, then § contains an IP-set. This fact will be used in the

proof of Lemmas [3.4] and

Lemma 3.4. If there is a rank function on a partial semigroup P, then P is strongly
1P -regular.

Proof. Fix a rank function p from P to a well-ordered set. Suppose that ¥ is a
sequence in P such that all the finite sums are defined. We claim that xg + FS; (%)
is not an IP-set. Since p restricted to the range of Z is finite-to-one, it is possible
to pick a permutation ¢ of w such that

P (wa(n)) < 14 (xo(m))
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for every n € m € w. Define y,, = 2,(,,) and ¥ = (yn)
then

Observe that if z¢g = yn,

new’

xo + FS1(%)
= oo+ FSuoa @)U (0 +FS ((00)127) ) U

U (o + FS (012" ) + FSupa ()
Applying the hypothesis that p is a rank function to the sequence (Yng+k)kecw, it
follows that
Yno + FSnot1(9)

is not an IP-set. Now for every y = >, v; € FS ((yl)
we have that

iEno)’ if m = min(a) then
Yno Ty + ano+1(?j) C Ym + FSerl(g)

and since the latter is not an IP-set (by applying the fact that p is a rank function

to the sequence (Ym+k)kew), neither is the former. Finally

Yno +FS ((yl)z€n0>

is finite and hence not an IP-set. This allows one to conclude that
zo + FSq (.f)

is not an IP-set, as claimed. ([l

Denote in the following by R /Z the quotient of R by the subgroup Z. It is a well
known fact that any commutative cancellative semigroup embeds into an abelian
group, see |7, Proposition I1.3.2]. Moreover any abelian group can be embedded in
a divisible abelian group, and a divisible abelian group in turn can be embedded
into a direct sum of copies of R /Z (see for example |5, Theorems 24.1 and 23.1]).
It follows that every cancellative commutative semigroup is a subsemigroup of a
direct sum (R /Z)®" of « copies of R /Z for some cardinal x. Therefore it is enough
to prove Proposition for (R/ Z)@'{. The proof of this fact will occupy the rest
of this section.

Let us fix a cardinal x. If z € (R /Z)®" and « € & then 74 () denotes the a-th
coordinate of z. Elements of R /Z will be freely identified with their representatives
in R (thus we might write something like ¢ # 0, and this really means ¢ ¢ Z), and
if we need to specify a particular representative, we will choose the unique such in
[0,1). Consider the partition

(R/2)* =CcuBU{0}
of (R /Z)®", where B is the set of elements of (R /Z)®" of order 2.
Lemma 3.5. The subset B of (R /Z)®" is strongly IP-regular.

Proof. Observe that BU{0} is a subgroup of (R /Z)®" isomorphic to the direct sum
of K copies of Z /2Z. Thus BU{0} has the structure of x-dimensional vector space
over Z /27Z. If ¥ is a sequence in B then FS(Z) U {0} is the vector space generated
by #. Moreover the sequence Z is linearly independent if and only if 0 ¢ FS(Z)
(see [4, Proposition 4.1]). Thus if Z is a sequence in B such that FS(Z) C B then &
is a linearly independent sequence, and hence any element of FS(&) can be written
in a unique way as a sum of elements of the sequence Z. In particular xg + FS;(Z)
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consists of those finite sums ) ;. x; such that 0 € a. Thus if a, b are finite subsets
of w\1, then so is a A b, hence

To + sz + 29 + le = Z x; & xo + FSq(Z).
i€a i€b i€alb
This shows that whenever z,y € g + FS1(Z) then = + y ¢ z¢ + FS1(&), which
implies that z¢ + FS;(Z) is not an IP-set and B is IP-regular. O

It remains to show now that C' is IP-regular. Elements € C' have order strictly
greater than 2, thus there is at least one v < x such that 7 (z) ¢ {0, 1}, hence it
is possible to define the function u: C' — & by

u(z) _min{a €k :ma(z) ¢ {0;}}

Consider
1
Cc, = {CE €C:myam)(r) = 4};
3
Cs = xGCZ’/TM(x)({E)ZL};

{
C = {:c € C : muwy(@) ¢ {ii}}

C=CiuCUCs

Observe that

is a partition of C.

Lemma 3.6. The function p restricted to Cy is a rank function on C1 as in Defi-

nition [3.2

Proof. Suppose that Z is a sequence in (R /Z)®" such that FS(Z) ¢ C;. We
will show that the function p restricted to {xn|n € w} is at most two-to-one, in
particular finite-to-one. This is because if n,m,k € w are three distinct numbers
such that p(z,) = p(zm) = p(zr) = «, then for 8 < o we get that mg(z, +m + k)
is an element of {0, 3} because so are m3(xy,), T3(zm), 73(xx). On the other hand,
To(Tn+Tmtzp) = %, which shows that u(x, +z,,+xx) = a but , +z,, +x1 € Cs,
a contradiction.

Now assume also that o = p(xg) < p(z;) for every i € w. By the previous
paragraph, there is at most one n € w\1 such that u(z,) = p(xg) = a. Thus
the first case is when there is such n. The first thing to notice is that for each
k € w\{0,n}, we have that 7, (zr) = 0. This is because otherwise, since u(xg) > «
we would have that m,(z)) = 1 and so ma(zg+2)) = 2. Therefore by an argument
similar to that in the previous paragraph, we would also have pu(xo+xy) = «, which
would imply that zg + x; € C3, a contradiction. Now write

1’0+F81(f) = {.’ﬂo-l—xn}U(xo + FS((wk)kEw\{Om})) U (xO +x, + FS((xk)kEw\{O,n}))

Clearly {xo + z1} is not an IP-set, as it is finite. Now since 7, (xg) = 0 for
i ¢ w\{0,n}, it follows that every element x € xo + FS((7x)rew\ {0,n}) Mmust satisfy
To(2) = £, which implies that 2o +FS((2)kew\ {0,7}) cannot contain the sum of any
two of its elements and consequently it is not an IP-set. Similarly, every element
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x € o + Ty + FS((Tk)kew 0,n)) satisfies m(z) = 3, so this set is, by the same
argument, not an IP-set. Hence ¢ + FS1(Z) is not an IP-set.

Now if there is no such n, i.e. if p(zxr) > p(xo) = « for all k£ > 0, then arguing
as in the previous paragraph we get that 7, (xx) = 0 for all k¥ > 0. Hence every
element = € x¢ + FS1(Z) satisfies that m,(z) = %, therefore the set zo + FS;(Z)
cannot be an IP-set. This concludes the proof that u is a rank function on Cy. 0O

Considering the fact that the function ¢ — —t is an automorphism of (R /Z)®"
mapping C onto C3 and preserving u allows one to deduce from Lemma that p
is a rank function on C5 as well. Thus it only remains to show that Cs is IP-regular.

Define
i 1 i 1
U 4 + 23m+j+37 4 + 23m+j+2

mew

Qi = {x €Cy:mym(z) €

for i € {0,1,2,3} and j € {0,1,2}. Observe that
Cy = U U Qij
ic4je3
is a partition of Cy. In order to conclude the proof of Proposition [3.1] it is now

enough to show that for every ¢ € 4 and j € 3 the set (); ; is IP-regular. This will
follow from Lemma by Lemma

Lemma 3.7. Consider k X w well-ordered by the lexicographic order. The function
p:Qi; — kxXw defined by p(x) = (u(x), m) where m is the unique element of w
such that

) 1 ) 1
Tp(a)(€) € 1 + 93m+j+37 4 + 93m+j+2
is a rank function on Q; ;.
Proof. To simplify the notation let us run the proof in the case when ¢ = 5 = 0.
The proof in the other cases is analogous. By Remark it is enough to show
that if z and y are such that z,y,z +y € Qoo then p(z) # p(y) and p (v +y) =

min {p(z), p(y)}, so suppose that z,y are elements of Qo such that z+y € Qoo
and assume by contradiction that p(x) = p(y) = (o, m). Thus

1 1
Ta(2), ma(y) € {23"*3’237”‘*2)

and hence
1 1
To (T4 y) € {W’W) .
If m =0 then
11
o (T +y) € {4,2>
thus
z2+yeCrUQioUQi1UQs.
If m > 0 then

1 1
Ta (T +y) € 93(m—1)+2+3> 93(m—1)+2+2
and therefore
r+y € Q072.
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In either case one obtains a contradiction from the assumption that z +y € Qo,0.
This concludes the proof that p(z) # p(y). We now claim that p(z+y) =
min {p(z), p(y)}. Define p(z) = (a,m) and p(y) = (B,n). Let us first consider
the case when a = 8 and without loss of generality m > n. In this case

welo+e o5}

1 1 1 1
Ta (l' + y) € 93m+3 + 93n+37 93m+2 + 23n+2

for £ < «, while

where
1 1 1 1

93m+2 + 23n+2 < 23n+1 < 23(n—1)+3"

This shows that p (x +y) = (a,n) = min {p(z), p(y)}. Let us now consider the case
when « #  and without loss of generality o > 3. In this case

e (x+y) € {0,;}

Wg(x) =0

for £ < B while

(because if not then mg(z) = % and that would imply that z +y € Ujes @1,5), and
hence

mg (x +y) = ma(y).
This shows that p(z +y) = (8,n) = min{p(x), p(y)}. This concludes the proof
of the fact that p satisfies the hypothesis of Remark and, hence, it is a rank
function on Qoo. O

4. THE CLASS OF IP-REGULAR SEMIGROUPS

In this section all semigroups will be denoted multiplicatively. Let us define
R to be the class of all IP-regular semigroups. Observe that by Proposition [3.1
R contains all commutative cancellative semigroups. We will now show that R
contains all Archimedean commutative semigroups. Recall that a commutative
semigroup S is Archimedean if for every a,b € S there is a natural number n and
an element ¢ of S such that a™ = bt, see |7, Section III.1]. By |7, Proposition III.1.3]
an Archimedean commutative semigroup contains at most one idempotent.

Proposition 4.1. Archimedean commutative semigroups are IP-reqular.

Proof. Suppose that S is a commutative Archimedean semigroup. Let us first as-
sume that S has no idempotent elements: In this case by |6l Proposition 1V.4.1]
there is a congruence C on S such that the quotient S /C is a commutative cancella-
tive semigroup with no idempotent elements. It follows from Proposition that
S /C is IP-regular, and therefore S is IP-regular by Lemma Let us consider
now the case when S has a (necessarily unique) idempotent element e. Denote
by H. the maximal subgroup of S containing e. By [6, Proposition 1V.2.3] H. is
an ideal of S and the quotient S /H, is a commutative nilsemigroup, i.e. a com-
mutative semigroup with a zero element such that every element is nilpotent. By
Lemma [2.5] and Proposition [3.1] it is therefore enough to show that a commutative
nilsemigroup 7T is IP-regular. Denote by 0 the zero element of . We claim that
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T\{0} is strongly IP-regular (as in Definition [2.1). In fact if Z is a sequence in
T such that FP(Z) does not contain 0, then x9 FP(Z) is not an IP-set since xg is
nilpotent. This concludes the proof that T is IP-regular, and hence also the proof

of Proposition O

Let us now comment on the closure properties of the class R. By Remark R
is closed with respect to taking subsemigroups, and contains all finite semigroups.
Moreover by Proposition [2.6]if a group G has a subnormal series with factor groups
in R, then G belongs to R. In particular R contains all virtually solvable groups
and their subgroups. Proposition shows that free products of elements of R
with no idempotent elements are still in R.

Proposition 4.2. Suppose that S,T are semigroups. If both S and T are IP-
regular, and T has no idempotent elements, then the free product ST is IP-regular.

Proof. Denote by T} the semigroup obtained from T adding an identity element 1.
Consider the semigroup homomorphism from S * T to 77 sending a word w to 1
if w does not contain any letters from T, and otherwise sending w to the element
of T obtained from w by erasing the letters from S and then taking the product
in T of the remaining letters of w. Observe that f~![{1}] is isomorphic to S and
therefore IP-regular. The conclusion now follows from Lemma [2.5] O

The particular case of Proposition when S = T = N lets us obtain that the
free semigroup on 2 generators is IP-regular. Considering the function assigning to
a word its length, which is a semigroup homomorphism onto N, one can see that
a free semigroup in any number of generators is IP-regular, since so is N . Via
Lemma [2.4] this observation gives a short proof of [9, Lemma 2.3].

5. THE MAIN THEOREM

We will now present the proof of Theorem Suppose that S is a commuta-
tive semigroup with well-founded universal semilattice. Denote by A the smallest
semilattice congruence on S as in [6, Proposition III.2.1]. Recall that the uni-
versal semilattice of S is the quotient S /N by |6, Proposition II1.2.2]. Moreover
by [7, Theorem I11.1.2] every A -equivalence class is an Archimedean subsemigroup
of S known as an Archimedean component of S. Pick a nonprincipal strongly sum-
mable ultrafilter p on S. If p contains some Archimedean component of S, then
p is regular by Lemma [2.4] and Proposition {1 Let us then assume that p does
not contain any Archimedean component. Denote by f: S — S /N the canonical
quotient map, and by ¢ the ultrafilter on S /A defined by B € ¢ if and only if
f'[Blep. By Remark q is a nonprincipal strongly productive ultrafilter on
S /N, and moreover in order to conclude that p is regular it is enough to show that
q is regular. This will follow from Lemma

Lemma 5.1. If A is a well-founded semilattice, then any nonprincipal strongly
summable ultrafilter ¢ on A is regular.

Proof. We can assume without loss of generality that A has a maximum element
Zmax. For & € A, denote by pred(x) the set
{ye A:y<zandy#x}

of strict predecessors of x. We will show by well-founded induction that, for every
x € A, if pred(z) € ¢ then ¢ is regular. The conclusion will follow from the
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observation that pred (zmax) € ¢. Suppose that x is an element of A such that, for
every y € pred(z), if pred(y) € ¢ then ¢ is regular. Suppose that pred(z) € ¢. If
pred(z) witnesses the fact that ¢ is regular, then this concludes the proof. Otherwise
there is a sequence ¢ in A such that FP(y) C pred(z) and yo FP1 (%) € p. Observing
that yo FP1(%) C pred(yo) U {yo} allows one to conclude that pred(yo) € ¢, where
yo € pred(z). Thus by inductive hypothesis ¢ is regular. O

This concludes the proof of the fact that a nonprincipal strongly summable ultra-
filter on a commutative semigroup with well-founded universal semilattice is regu-
lar. We will now show that the same fact holds for solvable inverse semigroups with
well-founded semilattice of idempotents. An introduction to inverse semigroups can
be found in [6, Chapter VII] or in the monograph [14]. Recall that the semilattice
of idempotents of a commutative inverse semigroup is isomorphic to its universal
semilattice. The notion of solvable inverse semigroup has been introduced by Piochi
in [15] as a generalization of the notion of solvable group to the context of inverse
semigroups (solvable groups are thus exactly the solvable inverse semigroups with
only one idempotent, see |15, Theorem 3.4]). Observe that by definition a solvable
inverse semigroup S of class n + 1 has a commutative congruence g such that, if
f:8 — S /vys is the canonical quotient map, then

FHE(S /)]

is an inverse subsemigroup of S of solvability class n. Moreover the solvable inverse
semigroups of solvability class 1 are exactly the commutative semigroups. The
fact that solvable inverse semigroups with well-founded semilattice of idempotents
satisfy the conclusion of Theorem [I.4] will then follow from Remark [I.3]by induction
on the solvability class, after we observe that a homorphic image of a semigroup
with well-founded semilattice of idempotents also has a well-founded semilattice of
idempotents. This is the content of Lemma [5.2]

Lemma 5.2. Suppose that S, T are semigroups, and f : S — T is a surjective
semigroup homomorphism. If S is an inverse semigroup with well-founded semilat-
tice of idempotents, then so is T.

Proof. By |3, Theorem 7.32] T is an inverse semigroup. If B is a nonempty subset
of the idempotent semilattice F (T") of T, let A be the set of idempotent elements
a of S such that f(a) € B. Since by hypothesis the idempotent semilattice E(S)
of S is well-founded, A has a minimal element ag. We claim that by = f(ag) is a
minimal element of B. Suppose that b € B is such that b < by. By [14, Chapter
1, Proposition 21(3)] there exists a € A such that f(a) = b < by = f(ag). Hence
by |14, Chapter 1, Proposition 21(7)] there exists a’ € A such that ' < a¢ and
f(a’) = f(a) = b. Since a is a minimal element of A we have that o’ = ag and hence
b= f(a’) = f(ap) = bp. This concludes the proof that B has a minimal element,
and that F (T') is well-founded. O

6. SPARSENESS

A strongly productive ultrafilter p on a (multiplicatively denoted) semigroup S
is sparse (see |9, Definition 3.9]) if for every A € p there are a sequence ' = (2,),,c,,
in S and a subsequence ¥ = (x, ) of & such that:
o FP(4) € p;
o FP(¥) C A;

new
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o {k,:n € w} is coinfinite in w.

Suppose that F is the partial semigroup of finite nonempty subsets of w, where,
for a,b € F the product ab is defined and equal to a U b if and only if max(a) <
min(b). A strongly productive ultrafilter on the partial semigroup F is an ordered
union ultrafilter as defined in |1, page 92]. A strongly productive ultrafilter p on a
multiplicatively denoted semigroup S is multiplicatively isomorphic to an ordered
union ultrafilter if there is a sequence & such that the function

f: F— FP()
ar— H ZT;
is injective, and furthermore

{f7'4]: Aep}

is an ordered union ultrafilter.

Lemma 6.1. If p is multiplicatively isomorphic to an ordered union ultrafilter,
then p is sparse strongly productive. In particular every ordered union ultrafilter is
sparse.

Proof. Suppose that the sequence & in S and the function f : F — FP(Z) witness
the fact that p is multiplicatively isomorphic to an ordered union ultrafilter. Fix
an element B of p, and observe that

(= (/AN Aep)

is an ordered union ultrafilter. Therefore there is a sequence bin F such that all the
products from b are defined (equivalently, max(b;) < min(b;+1) for every i € w),

-,

and FP(b) € ¢q. Moreover by |13, Theorem 4] (see also |11, Theorem 2.6]) there is

an element W of ¢ contained in FP(b) such that |JW has infinite complement in
UiEw b;. Denote by D the set of i € w such that b; C |JW. Observe that

Uoe=Uw
€D
and
W C FP ((bi)ieD) .

In particular D has infinite complement in w and FP ((b;);cp) belongs to q. There-
fore the sequence 7’ in S such that z; = f(b;) for every i € w is such that FP(Z) C B
and FP ((fi)ieD) € p, witnessing the fact that p is sparse strongly productive. O

We will now define a condition on sequences that ensures the existence of a
multiplicative isomorphism with an ordered union ultrafilter. This can be seen
as a noncommutative analogue of the notion of strong uniqueness of finite sums
introduced in |11} Definition 3.1] in a commutative context.

Definition 6.2. A sequence 7 in a semigroup S satisfies the ordered uniqueness of
finite products if the function

f:F = FP@)

a'—>HfEZ‘
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is an isomorphism of partial semigroups from F to FP(Z). Equivalently f is injective
and if a,b are elements of F such that f(a)f(b) € FP(Z), then the maximum element
of a is strictly smaller than the minimum element of b.

For example suppose that S is the free semigroup on countably many generators
{sn : n € w}. Tt is not difficult to see that the sequence (s;,) in S satisfies the
ordered uniqueness of finite products..

new

Remark 6.3. If a strongly productive ultrafilter p on S contains FP(Z) for some
sequence ¥ in S satisfying the ordered uniqueness of finite products, then p is
multiplicatively isomorphic to an ordered union ultrafilter.

Remark [6.3] follows immediately from the fact that an ordered union ultrafilter
is just a strongly productive ultrafilter on the partial semigroup F.

The following immediate consequence of Remark[6.3]and Lemma [6.1] can be seen
as a noncommutative analogue of [11, Theorem 3.2] (see also [4, Corollary 2.9]).

Corollary 6.4. Let p be a strongly productive ultrafilter on a semigroup S. If
p contains FP (L) for some sequence T satisfying the ordered uniqueness of finite
products, then p is sparse.

In the remainder of this section, we will present an application of Corollary [6.4] to
a question of Neil Hindman and Lakeshia Legette Jones from [9] about very strongly
productive ultrafilters on the free semigroup on countably many generators.

Recall that a sequence 4 on a semigroup S is a product subsystem of the sequence
#in S if there is a sequence (a,,),,,, in F such that y,, = Hiean z; and the maximum
element of a,, is strictly smaller than the minimum element of a,, 1 for every n € w.
Suppose that S is the free semigroup on countably many generators, and § is an
enumeration of its generators. A wvery strongly productive ultrafilter on S as in |9}
Definition 1.2] is an ultrafilter p on S generated by sets of the form FP(Z) where &
is a product subsystem of §.

Theorem 6.5. Every very strongly productive ultrafilter on the free semigroup S
is multiplicatively isomorphic to an ordered union ultrafilter, and hence sparse.

Proof. Observe that by [9, Theorem 4.2] very strongly productive ultrafilters on S
are exactly the strongly productive ultrafilters containing FP(3) as an element. In
particular, since the sequence § satisfies the ordered uniqueness of finite products,
all very strongly productive ultrafilters on S are multiplicatively isomorphic to
ordered union ultrafilters by Remark and hence sparse by Lemma O

Theorem answers Question 3.26 from [9]. Corollary 3.11 of 9] asserts that
a sparse very strongly productive ultrafilter on S can be written only trivially as a
product of ultrafilters on the free group on the same generators. Since by Theorem
any very strongly productive ultrafilter on S is sparse, one can conclude that the
conclusion of |9, Corollary 3.11] holds for any very strongly productive ultrafilter
on S. This is the content of Corollary

Corollary 6.6. Let G be the free group on the sequence of generators s, and let
S be the free semigroup on the same generators. Suppose that p is a very strongly
productive ultrafilter on S. If q,r are ultrafilters on G such that qr = p, then there

is an element w of G such that one of the following statements hold:

(1) r =wp and ¢ = pw™1;
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(2) r=w and q = pw!;

(3) r=wp and q = w1t
In particular, if ¢, v € G* are such that qr = p, then r = wp and ¢ = pw™" for

some w € G.
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