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ABSTRACT. A particular case of the Hindman–Galvin–Glazer theorem states that, for ev-
ery partition of an infinite abelian group G into two cells, there will be an infinite X ⊆ G
such that the set of its finite sums {x1 + · · ·+ xn | n ∈ N ∧ x1, . . . , xn ∈ X are distinct} is
monochromatic. It is known that the same statement is false, in a very strong sense, if one
attempts to obtain an uncountable (rather than just infinite) X. On the other hand, a recent
result of Komjáth states that, for partitions into uncountably many cells, it is possible to
obtain monochromatic sets of the form FS(X), for X of some prescribed finite size, when
working with sufficiently large Boolean groups. In this paper, we provide a generaliza-
tion of Komjáth’s result, and we show that, in a sense, this generalization is the strongest
possible.

1. INTRODUCTION

Ramsey-type theorems are statements that assert the existence of rich monochromatic
substructures whenever some big ambient structure is coloured (partitioned). A very
notable such result, which constitutes the starting point for this paper, is Hindman’s the-
orem [7], stated below (we actually state a very general version of this result, which is
usually known as the Hindman–Galvin–Glazer theorem).

Theorem (See [8]). Let G be any infinite abelian group, and suppose that we colour its elements
with finitely many colours. Then there is an infinite X ⊆ G such that the set

FS(X) =

{
∑
x∈F

x | F ⊆ X is finite nonempty

}
of finite sums of elements of X (with no repetitions) is monochromatic.

In order to appropriately deal with generalizations to this theorem, it is convenient to
introduce some notation. Given an abelian group G, the symbol G → (κ)FS

θ will denote
the statement that for every colouring of the elements of G with θ colours, there exists an
X ⊆ G with |X| = κ such that FS(X) is monochromatic; and G → [κ]FS

θ is the exact same
statement except that rather than requiring FS(X) to be monochromatic, we just require
that it avoids at least one colour (thus the “square-bracket” statement is weaker than the
“round-bracket” one, and this situation is reversed when one considers the negations
of these statements). Hence, Hindman’s theorem just asserts that G → (ω)FS

k holds for
every infinite abelian group G and every finite number k < ω. There are at least three
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questions that naturally arise upon encountering this result. The first one is whether it is
possible to increase the number of colours to an infinite number, and still obtain infinite
monochromatic sets. In Section 5 we answer this question in the negative. The second
question that might naturally arise, is whether one can, still with finitely many colours,
obtain uncountable monochromatic subsets. In [4], the first author of this paper answered
that question in the negative, by proving that for every infinite abelian group G, it is the
case that G 9 (ω1)

FS
2 . Later work of the first author and Assaf Rinot [5] made it evident

that, in fact, some much stronger negative statements are true. For example, it is the case
that every uncountable abelian group G satisfies G 9 [ω1]

FS
ω , that is, there is a colouring

of the group G with ω colours such that for every uncountable X ⊆ G, not only does
FS(X) fail to be monochromatic, but in fact it contains elements of all possible colours
(we say that FS(X) is panchromatic). The question of whether the number of colours
in this result can be increased from ω to ω1 turns out to be independent from the ZFC
axioms, with both alternatives (∀G)(G 9 [ω1]

FS
ω1
) and R → [ω1]

FS
ω1

being consistent (the
latter depending on a very mild large cardinal assumption). Furthermore, results from [5]
entail that for many cardinals κ (for example, if κ is the successor of a regular cardinal) it
is in fact the case that every abelian group G of cardinality κ satisfies G 9 [κ]FS

κ ; in fact, it
is consistent to have R 9 [c]FS

c , where R is the additive group of real numbers.
Surprisingly, there is a third question that arises naturally from consideration of Hind-

man’s theorem, by increasing the number of colours and simultaneously decreasing the
size of the expected monochromatic set. That is, we can also consider the question of
whether one can obtain an analog of Hindman’s theorem, with infinitely many colours,
where the monochromatic sets that we request are finite. Komjáth [9] initiated this line of
research by proving that, for every finite n and infinite κ, there exists a (sufficiently large)
λ such that, if B(λ) is the (unique up to isomorphism) Boolean group of cardinality λ,
then B(λ)→ (n)FS

κ . In fact, even more is true. Komjáth proved that for every κ, there is a
(sufficiently large) λ such that, whenever we colour the Boolean group B(λ) with κ many
colours, there is a κ × n matrix of elements of B(λ), (xα,i | α < κ ∧ i < n), such that the
set

FSmatrix(xα,i | α < κ ∧ i < n) =
{

xα1,i1 + · · ·+ xαk,ik | i1 < · · · < ik < n ∧ α1, . . . , αk < κ
}

is monochromatic. From now on, we will abbreviate this statement by means of the sym-
bol B(λ) → (κ × n)FSmatrix

κ (and the analogous symbol when B(λ) is replaced by some
other group). Note that, since FSmatrix(xα,i | α < κ ∧ i < n) contains FS(xα,i | i < n)
for every fixed α, the statement G → (κ × n)FSmatrix

κ is always stronger than the statement
G → (n)FS

κ . Along similar lines, Carlucci [1] has proved results where Boolean groups are
coloured with uncountably many colours, and uncountable sets X are obtained where a
carefully restricted subset of FS(X) (containing only those finite sums whose number of
summands belongs to a set of some specific form) is monochromatic.

In this paper we generalize Komjáth’s result above for n = 2 by showing that, for
every κ, there is a λ such that every abelian group G of cardinality λ will satisfy G →
(κ × 2)FSmatrix

κ . Our λ is just the cardinal (2κ)+, which is significantly smaller than the
one used by Komjáth in his result. Moreover, we also show that this λ is optimal, in the
sense that B(2κ) 9 (2)FS

κ (and a fortiori, B(2κ) 9 (κ × 2)FSmatrix
κ ). Extremely surprisingly,

however, our attempt to further generalize these results for n = 3 yields a negative result:
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we also show that there are arbitrarily large groups G such that G 9 (3)FS
ω . So Komjáth’s

result for monochromatic FS-sets generated by three or more elements cannot be extended
to all abelian groups of a given size.
Notation: Most of the standard notational conventions of set theory are followed here.
For example, every ordinal α is a von Neumann ordinal (and so, set-theoretically, α is
just the set of all ordinals ξ < α), and each cardinal is identified with the least ordinal
of that cardinality. If κ is an infinite cardinal, then κ+ is its successor cardinal. Given a
cardinal κ, we recursively define the beth sequence that starts at κ by letting i0(κ) = κ,
iα+1 = 2iα(κ), and iα(κ) = sup{iβ(κ) | β < α} for limit α. We use exponential notation
for both the cardinal exponential function, and the set-theoretic exponential operation
(taking a set of functions). Thus, an expression such as κλ might denote either the set
{ f | f : λ −→ κ}, or the cardinality of that set. We are confident that the context will
always be sufficient to determine which of the two meanings of κλ should be inferred
every time the symbol occurs, and that therefore there will be no confusion arising from
this.

Given an infinite cardinal λ, we use the symbol B(λ) to denote the unique (up to iso-
morphism) Boolean group of cardinality λ (recall that a Boolean group is one in which
every element has order 2), whose most friendly incarnation is ([λ]<ω,M)

Something must be said also about how the injectivity of divisible groups provides a
structural theorem that yields much information about how abelian groups look like. The
result (see e.g. [3, p. 123] for a detailed explanation) is that, if G is an arbitrary abelian
group, then we can embed G into a direct sum of the form

⊕
α<λ Gα, where each Gα is

either equal to Q, or to a Prüfer group Z[p∞], for p a prime number. Thus for every abelian
group G, there is a pairwise disjoint sequence of indices (Ip | p ∈ P), where P is the union

of {0}with the collection of prime numbers, such that G embeds in
⊕

p∈P

(⊕
α∈Ip Z[p∞]

)
,

where we stipulate that Z[0∞] = Q for notational convenience. In this context, for p ∈ P

we will denote by πp the projection onto the indices from Ip, in other words, πp(x) =
x � Ip

⊕
α∈Ip Z[p∞]. A group that has special importance for us is the one-dimensional

torus T = R/Z. Typically we will identify an element of T, which formally is the coset
of a real number modulo Z, with its unique representative belonging to [0, 1). With this
identification, we can describe Z[p∞] =

{
a
pk ∈ Q/Z ⊆ T | a ∈ [0, 1) ∧ k ∈N

}
, for p a

prime number. Sometimes it is also convenient to think of Q as embedded in T (which
can be easily done, e.g. via the mapping q 7−→

√
2q+Z). Hence on occasion we will think

of the groups Gα as countable subgroups of T. Finally, for an element x of any direct sum
of groups, we will let supp(x) denote the (finite) set of indices β such that x(β) 6= 0,
and we will let σ(x) denote the (finite) sequence of non-zero entries of x (essentially, σ(x)
is just x � supp(x); formally it is the result of composing the inverse of the Mostowski
collapse of supp(x) with the sequence x � supp(x)).

Organization of this paper: This paper contains 4 sections in addition to this Introduc-
tion. In Section 2, we generalize Komjáth’s result, and improve his upper bound, for
n = 2. In Section 3 we proceed to prove that this same result cannot be generalized any
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further for n ≥ 3. In Section 4, we show that the upper bound obtained in Section 2 is op-
timal. Finally, in Section 5 we prove some miscellaneous negative results along the same
lines as the other results in the paper.

2. GENERALIZATION OF KOMJÁTH’S RESULTS FOR n = 2

In this section, we will proceed to prove that for every κ there is a λ such that every
abelian group G of cardinality λ satisfies G → (2)FSmatrix

κ .

Definition 1. If G is a group and (gα | α < η) is a transfinite sequence of elements of G,
we will say that the sequence is independent if for every α < η the element gα does not
belong to the subgroup of G generated by {gξ | ξ < α}.

Note that any independent sequence 〈gα | α < η〉 will satisfy that, whenever αi < βi
(i < 2) are such that gα0 − gβ0 = gα1 − gβ1 , then α0 = α1 and β0 = β1. We start with an
easy lemma in this direction.

Lemma 2. Let G be an abelian group, and let X ⊆ G be a subset of uncountable cardinality κ.
Then there exists an independent sequence of length κ whose range is contained in X.

Proof. Recursively pick gα ∈ X that does not belong to the subgroup generated by {gξ |
ξ < α}. This can always be done, as long as α < κ, because the latter subgroup has
cardinality at most max{|α|, ω} < κ. �

The previous lemma is false if we let G be a countable group. For example, in Z it is
easily checked that there are no infinite independent sequences (if (xn | n < ω) were an
infinite independent sequence, then the sequence I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · · , where each
In is the subgroup generated by {xi | i ≤ n}, would be a strictly increasing sequence of
ideals in the Noetherian ring Z).

The following theorem generalizes Komjáth’s result [9, Theorem 2], in the specific case
that n = 2.

Theorem 3. Let κ be an infinite cardinal, and let λ = (2κ)+. Then for every abelian group G of
cardinality λ, we have that G → (κ × 2)FSmatrix

κ .

Proof. Suppose that G is an abelian group with | G |= λ, and choose an independent
sequence (gα | α < λ) in G. Define d : [λ]2 −→ κ by d({α < β}) = c(gβ − gα). By
the Erdős–Rado theorem, λ → (κ+)2

κ (in fact, for what we are about to do it suffices that
λ → (κ + κ)2

κ), thus we can choose two increasing sequences of ordinals (αξ | ξ < κ) and
(γη | η < κ), as well as an ordinal β, satisfying

sup
ξ<κ

αξ < β < γ0

and a colour δ such that d“[{αξ | ξ < κ} ∪ {β} ∪ {γη | η < κ}]2 = {δ}. For ξ < κ, define
xξ,0 = gβ − gαξ

and xξ,1 = gγξ
− gβ. Since the sequence (gα | α < λ) is independent, the

entries of our matrix are pairwise distinct. Furthermore, for each choice of ξ, η < κ, we
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have that

c(xξ,0) = c(gβ − gαξ
) = d({αξ , β}) = δ,

c(xξ,1) = c(gγη − gβ) = d({β, γη}) = δ,

c(xξ,0 + xη,1) = c(gβ − gαξ
+ gγη − gβ) = c(gγη − gαξ

) = d({αξ , γη}) = δ,

and this finishes the proof. �

Komjáth’s result [9, Theorem 2] establishes that, given n, letting λ = i2n−1(i2n−1−1(κ)
+)+

yields that B(λ) → (κ × n)FSmatrix
κ . In particular, for n = 2 he needs to consider groups of

cardinality i1(κ
+)+ = (2κ+)+. In Theorem 3 above, we were able to simultaneously

lower this size to (2κ)+ and at the same time improve the result to arbitrary abelian
groups, although only in the case n = 2. In Section 4 we will show that the (2κ)+ in
this result is optimal, in the sense that there are groups G of cardinality 2κ such that
G 9 (2)FS

κ . In Section 3, we will show that the number n = 2 is also optimal, in the sense
that there are groups G of arbitrarily large size such that G 9 (3)FS

ω .

3. KOMJÁTH’S RESULT CANNOT BE GENERALIZED FOR n ≥ 3

Given Komjáth’s results [9], as well as our Theorem 3 above, it would be desirable
to generalize these results to n ≥ 3. That is, we would like to obtain, given a κ and an
n ≥ 3, a sufficiently large cardinal λ such that all abelian groups G of cardinality λ satisfy
G → (κ × 3)FSmatrix

κ , or at least G → (3)FS
κ . In this section we will see, however, that this is

impossible. The first step towards the proof of such impossibility result is the following
Lemma, whose proof was communicated to the first author by Imre Leader and indepen-
dently also by Julian Sahasrabudhe in personal communications, and is reproduced here
with their kind permission.

Lemma 4. There are no three distinct vectors ~x,~y,~z ∈ Rn such that ‖~x‖ = ‖~y‖ = ‖~z‖ =
‖~x +~y‖ = ‖~x +~z‖ = ‖~y +~z‖ = ‖~x +~y +~z‖.

Proof. Suppose, on the contrary, that~x,~y,~z are three distinct vectors such that r = 〈~x,~x〉 =
〈~y,~y〉 = 〈~z,~z〉 = 〈~x +~y,~x +~y〉 = 〈~y +~z,~y +~z〉 = 〈~x +~z,~x +~z〉 = 〈~x +~y +~z,~x +~y +~z〉
(in particular, r 6= 0). Notice that

r = 〈~x +~y,~x +~y〉 = 〈~x,~x〉+ 2〈~x,~y〉+ 〈~y,~y〉 = 2〈~x,~y〉+ 2r,

which implies that 〈~x,~y〉 = −1
2r. A similar argument shows that 〈~y,~z〉 = 〈~x,~z〉 = −1

2r.
Now

r = 〈~x +~y +~z,~x +~y +~z〉 = 〈~x,~x〉+ 〈~y,~y〉+ 〈~z,~z〉+ 2〈~x,~y〉+ 2〈~y,~z〉+ 2〈~x,~z〉

= 3r + 2
(
−3

2
r
)
= 0,

which is a contradiction. �

Now we can explicitly state the theorem about the impossibility of obtaining further
generalizations of Komjáth’s result.

Theorem 5. For each infinite cardinal λ, there is an abelian group G of cardinality λ such that
G 9 (3)FS

ω .
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Proof. Given λ, let G be either
⊕

α<λ Z (the free abelian group on λ generators), or
⊕

α<λ Q.
Each element x ∈ G is a sequence of integers (or of rational numbers), almost all of which
equal zero. Hence it makes sense to define c(x) = ∑α<λ x(α)2. This gives us a colouring
c : G −→ Z on ω many colours. Suppose that there were three distinct elements x, y, z
such that c(x) = c(y) = c(z) = c(x + y) = c(x + z) = c(y + z) = c(x + y + z). Let
I = supp(x) ∪ supp(y) ∪ supp(z). By replacing x, y, z with x � I, y � I, z � I (that is,
ignoring all entries not in I, which equal 0 anyway), we can think of x, y, z as vectors in
Zn ⊆ Rn (or in Qn ⊆ Rn), where n = |I|. Then we will have that ‖x‖ = ‖y‖ = ‖z‖ =
‖x + y‖ = ‖x + z‖ = ‖y + z‖ = ‖x + y + z‖, contradicting Lemma 4. �

Suppose that we are given κ, n, and and an abelian group G. Let λ = i2n−1−1(κ)
+, as

in Komjáth’s [9, Theorem 1] for κ and n. Then there are two cases where we can arrive to
conclusions:

(1) If G has at least λ elements of order 2, then we know that G → (n)FS
κ (since B(λ)

embeds in G, and hence every colouring of G induces a corresponding colouring
in B(λ)).

(2) On the other hand, if G has κ or fewer elements of finite order, then we know that
G 9 (n)FS

κ . This is because, by the injectivity of divisible groups (as explained in
the Introduction), we can think of G as a subgroup of

⊕
p∈P

(⊕
α∈Ip Z[p∞]

)
. Now

we define a colouring c of G as follows. Notice that elements of finite order are
those x ∈ G for which π0(x) = 0, so we just colour each of these with a different
colour (we do have enough colours, because there are less than κ many elements of
finite order). Now colour every x ∈ G of infinite order with colour

(
∑α∈I0

x(α)2, y
)
,

where y is the unique element satisfying πp(y) = πp(x) for every p ∈ P \ {0}, and
π0(y) = 0. The same argument as in the proof of Theorem 5 shows that c cannot
carry monochromatic sets of the form FS(x, y, z).

Now, if neither of these two possibilities hold, then we do not have yet a way of decid-
ing whether or not G → (n)FS

κ . In order to provide some partial answer to this question,
we introduce the following definition.

Definition 6. Let n < ω, and let m ≥ 2. A sequence (xk | k < n) will be called an n-
adequate pattern modulo m if, for some l < ω, we have (∀k < n)(xk ∈ (Z/mZ)l), and
σ“[FS(xk | k < n)] is a singleton, where σ(x) denotes the sequence of non-zero entries of
x ∈ (Z/mZ)l.

The construction of an independent family by Komjáth in [9, Lemma 1] provides us
with n-adequate patterns modulo 2, for every n < ω (his construction yields an n-
adequate pattern living in (Z/2Z)2n

). For any arbitrary m, the sequence
((1,−1, 0), (0, 1,−1)) in (Z/mZ)3 provides us with a 2-adequate pattern modulo any ar-
bitrary m. On the other hand, Theorem 5 tells us that it is hopeless to look for n-adequate
patterns “modulo 0” (i.e. in some Zl rather than (Z/mZ)l), for n ≥ 3. The issue of
whether an arbitrary group G satisfies G → (n)FS

κ for various n and κ, as per the discus-
sion immediately before Definition 6, is essentially equivalent to the question of whether
there are n-adequate patterns modulo m for various n, m ∈N, so that the mapping σ con-
stitutes, in a sense, the “canonical” colouring for abelian groups (in the sense that finding
monochromatic subsets for an arbitrary colouring is equivalent to finding monochromatic
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subsets for this particular colouring, i.e. patterns). The next two theorems make this pre-
cise (thus providing a “canonization theorem” of sorts).

Theorem 7. Suppose that there exists an n-adequate pattern modulo m. Then for every κ there
exists a λ such that every abelian group G containing at least λ elements of order m will satisfy
G → (n)FS

κ .

Proof. Let (x1, . . . , xn) be an n-adequate pattern modulo m. Suppose that the xi belong
to
⊕

i<L(Z/mZ), and suppose that σ(xi) = (k1, . . . , kl) has length l. Let λ = il−1(κ)
+,

so that by Erdős–Rado we have λ → (L)l
κ. Take an arbitrary abelian group G with λ

elements of order m, and suppose that c : G −→ κ. Using Lemma 2 (with X the set of
elements of order m), pick an independent sequence (gξ | ξ < λ) consisting of elements
of G of order m. Define a colouring d : [λ]l −→ κ by stipulating that d({ξ1, . . . , ξl}) =
c(k1gξ1 + · · · + klgξl), whenever ξ1 < · · · < ξl < λ. By our choice of λ, there will be
ordinals β1, . . . , βL such that d“[{β1, . . . , βL}]l = {δ}. Now define yi = ∑j<L xi(j)gβ j for
i ∈ {1, . . . , n}. We claim that, for every y ∈ FS({y1, . . . , yn}), it is the case that c(y) = δ.
Since each gβ has order m, we have that kgβ = k′gβ if k ≡ k′ mod m, and in particular if
m | k then kgβ = 0. So if y = yi1 + · · ·+ yit , letting x = xi1 + · · ·+ xit we get that

y = ∑
j<L

xi1(j)gβ j + · · ·+ ∑
j<L

xit(j)gβ j = ∑
j<L

(xi1(j) + · · ·+ xit(j))gβ j

= ∑
j<L

x(j)gβ j = ∑
j∈supp(x)

x(j)gβ j = k1gξ1 + · · ·+ klgξl ,

where supp(x) = {ξ1, . . . , ξl} ∈ [{β1, . . . , βL}]l (this works because σ(x) = (k1, . . . , kl) by
assumption). Hence

c(y) = c(k1gξ1 + · · ·+ klgξl) = d({ξ1, . . . , ξl}) = δ,

and we are done. �

Theorem 8. Suppose that n, m ∈ N have the property that there is a λ such that every abelian
group G with at least λ elements of order m satisfies G → (n)FS

ω . Then there is an n-adequate
pattern modulo m.

Proof. Consider G =
⊕

α<λ(Z/mZ). The mapping σ : G → (Z/mZ)<ω that sends each
x to its sequence of non-zero entries colours G with countably many colours. Clearly a
sequence (xi | i < n) with FS(xi | i < n) monochromatic will immediately yield an
n-adequate pattern modulo m. �

Thus, a complete description of the groups G for which G → (n)FS
κ is equivalent to an

answer to the question of the existence of n-adequate patterns modulo m for various m.
The Chinese Remainder Theorem suggests that we might only need to search for these
patterns if m is the power of a prime number. The lemma below shows that, in fact, it
suffices to consider the situation where m is a prime number.

Lemma 9. Let λ be an uncountable regular cardinal, and let G be an abelian group with λ many
elements of finite order. Then there is a prime number p, and a subgroup H ⊆ G, with |H| = λ,
such that all elements of H have order p.



8 DAVID FERNÁNDEZ-BRETÓN AND SUNG HYUP LEE

Proof. Using again the injectivity of divisible groups, as described in the Introduction, we
know we can embed G into

⊕
α<λ Gα where each Gα is a countable subgroup of T = R/Z.

Considering all elements of order m of G, by the ∆-system lemma we can pick λ many
of them, say {xα | α < λ}, whose supports form a ∆-system (this utilizes the fact that
for every given support, there are at most countably many elements of G with that given
support, which follows from the fact that each Gα is countable), let us denote by r the root
of this ∆-system. By the pigeonhole principle, we may assume that all of the xα � r are
equal. Since each xα has order m, then for each ξ ∈ r we have that mxα(ξ) = 0. Thus if we
partition λ into λ many pairwise disjoint subsets of size m, {Fα | α < λ}, and we define
yα = ∑β∈Fα

xβ, we will have that yα � r is identically zero, yα will still have order m, and
the supports of the yα will be pairwise disjoint. If p is a prime number dividing m, with
m = pk, then it is not hard to check now that the sequence (kyα | α < λ) consists of λ
many distinct elements, all of which have order p. �

We close this section with a couple of final notes. As we pointed out above, n-adequate
patterns modulo 2 are known to exist for all n, and so are 2-adequate patterns modulo
m for all natural numbers m. After almost a year of not knowing anything else, the first
author was recently made aware (via a personal communication from Andy Zucker) that
Christopher Cox recently found, aided by a computer, an example of a 3-adequate pattern
modulo 3. Whether or not there are n-adequate patterns modulo m for n 6= 2 6= m and
(n, m) 6= (3, 3) is still wide open (as mentioned above, in order to completely characterize
abelian groups satisfying finitary Hindman-like theorems, it suffices to determine the
existence of n-adequate patterns modulo prime numbers p).

The idea of using the mapping σ (mapping an element of a direct sum to the sequence
of its nonzero entries) as a canonical colouring, in order to prove algebraic Ramsey-
theoretic results on large abelian groups, was also recently used by Leader and Rus-
sell [13] to prove that every abelian group G of cardinality at least iω without elements of
order 4 has the property that for every finite colouring c : G −→ k, there exists an infinite
X ⊆ G such that X + X is monochromatic1. This is also one of the central ideas in the
recent proof of Komjáth, Leader, Russel, Shelah, D. Soukup and Vidnyánszky [11] that it
is consistent, modulo some large cardinals, that the real numbers have the same property
(namely, for every c : R −→ k < ω there exists an infinite X ⊆ R such that X + X is
monochromatic).

4. A LOWER BOUND

In this section, we will show that the upper bounds from Section 2 are optimal. Recall
that, in Theorem 3, it was established that for every infinite κ, every abelian group G of
cardinality (2κ)+ satisfies G → (2)FS

κ . The theorem below establishes that the number
(2κ)+ in this result is the best possible.

Theorem 10. For every infinite κ, B(2κ) 6→ (2)FS
κ .

1Leader and Russell’s result is not stated in as general a form, but their proof easily yields the more
general version stated here.
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Proof. Let κ be an infinite cardinal. We think of the group B(2κ) as consisting of the set
[2κ]<ω of finite subsets of 2κ, equipped with symmetric difference 4 as its group opera-
tion. We also think of 2κ as the set of branches through the full binary tree of height κ.
Hence 2κ is equipped with a natural linear order, namely the lexicographic one, which
we will denote simply by <. Given two distinct elements f , g ∈ 2κ, we will denote by
∆( f , g) = min{α < κ | f (α) 6= g(α)}. Hence f < g iff f (∆( f , g)) < g(∆( f , g)). As a
useful convention, we will stipulate that ∆( f , f ) = κ.

We define a colouring c of B(2κ) = [2κ]<ω as follows: Given an x ∈ [2κ]<ω, suppose
that x = {x0, . . . , xn−1}, where x0 < x1 < · · · < xn−1. We let c(x) be the double-indexed
finite sequence (∆(xi, xj) | i, j < n). Thus we can think of c(x) as a finite (square) sym-
metric matrix whose diagonal entries all equal κ, and with ordinals less than κ off the
diagonal. Clearly there are |[κ]<ω| = κ many such matrices, thus c colours B(2κ) with κ
many colours. We will now argue that it is not possible to have x, y ∈ [2κ]<ω such that
c(x) = c(y) = c(x4 y).

So suppose that x, y ∈ [2κ]<ω are two elements satisfying c(x) = c(y) = c(x4 y),
and furthermore suppose that these elements were chosen with n = |x| = |y| = |x4 y|
smallest possible. Let α = min(ran(c(x))), the least ordinal that occurs as an entry of the
matrix c(x). We let x = {x0, . . . , xn−1}, y = {y0, . . . , yn−1} and x4 y = {z0, . . . , zn−1},
all three ordered lexicographically. Suppose that i < j are such that α is the (i, j)-th entry
of c(x), that is, α = ∆(xi, xj). Let f = xi � α. Since α is the smallest of all the ∆(xi, xk),
it follows that xk � α = f for all k < n. Similarly, yk � α = f for all k < n, and of
course zk � α = f for all k < n. We will also have that ∆(yi, yj) = α; and moreover
will have that xi(α) = 0, and yi(α) = 0. Now for each k 6= i, by looking at the element
∆(xi, xk) we can know whether xk(α) equals 0 or 1 (the former if ∆(xi, xk) > α, the latter
otherwise). Since ∆(xi, xk) = ∆(yi, yk) = ∆(zi, zk), we will have that {k < n | xk(α) =
0} = {k < n | yk(α) = 0} = {k < n | zk(α) = 0}, let us call this set I. Letting
x′ = {xk | k ∈ I}, y′ = {yk | k ∈ I} and z = {zk | k ∈ I}, we can see now that
c(x′) = c(y′) = c(z) (since each of these matrices arises from specifically taking the (k, k′)-
th entries of the matrix c(x), c(y), c(z), for k, k′ ∈ I). Moreover, x′ ⊆ x \ {xj} and so
|x′| < n; furthermore, it is not hard to see that z = x′ 4 y′. This gives us two elements
x′, y′ with c(x′) = c(y′) = c(x′4 y′) and |x′| < |x|, which contradicts the choice of x and
y.

This contradiction shows that for no x, y can the set FS({x, y}) be monochromatic.
Hence the colouring c witnesses B(2κ) 9 (2)FS

κ , and we are done. �

The anonymous referee has pointed out that an unpublished result of Komjáth’s ex-
tends Theorem 10 to all small abelian groups. That is, for every abelian group G with
|G| ≤ 2κ, it is the case that G 9 (2)FS

κ .
We finish this section with a brief discussion of the upper bounds for Komjáth’s result

on Boolean groups. Given an infinite cardinal κ and an n ∈ N, denote by β(n, κ) =
min{λ | B(λ) → (n)FS

κ }. Thus [9, Theorem 1] implies that β(n, κ) ≤ i2n−1(κ)+ (and in
particular, supn<ω β(n, κ) ≤ iω(κ)). And our Theorem 10 states that β(2, κ) = (2κ)+ (and
in particular, 2κ < supn<ω β(n, κ)). This yields the following characterization of strong
limit cardinals in terms of the arrow relations satisfied by Boolean groups. The proof is
immediate.
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Proposition 11. Let λ be an uncountable cardinal. Then the following are equivalent:
• (∀κ < λ)(∀n ∈N)(B(λ)→ (n)FS

κ );
• λ is a strong limit.

5. SOME NEGATIVE RESULTS

In this section, we state and prove a number of negative Ramsey-theoretic results. Two
of these arose from an (unsuccessful) attempt at generalizing analogous results from the
context of finite colourings, when trying to increase the number of colours to an infinite
number. There are two more results that also arise from an (also unsuccessful) attempt at
generalizing some results that hold for Boolean groups.

The first result that we mention arises directly from Hindman’s theorem, by consid-
ering the situation with infinite colourings. Recall that we denote by P the set of prime
numbers along with 0, and Z[0∞] is understood to be Q by convention.

Theorem 12. Let G be an infinite abelian group. Then G 9 (ω)FS
ω .

Proof. Suppose that |G| = λ. By the injectivity of divisible groups (as explained in the
Introduction), G embeds in

⊕
p∈P

(⊕
α∈Ip Z[p∞]

)
. We define the colouring c on G by

c(x) := (σ(πp(x)) | p ∈ P) (recall that σ maps each element to its sequence of nonzero
entries). This is a colouring with countably many colours, now we will show that there
cannot be an infinite set X with FS(X) monochromatic for this colouring. Suppose oth-
erwise, and let X be such that c[FS(X)] = {(sp | p ∈ P)}. First of all, note that this
implies, in particular, that all elements of X have supports of the same size. Note, how-
ever, that it is not possible for two distinct x, y ∈ X to have the exact same support, for, if
supp(x) = supp(y) and (σ(πp(x)) | p ∈ P) = c(x) = (σp | p ∈ P) = c(y) = (σ(πp(y)) |
p ∈ P), then it must actually be the case that x = y. Hence the set {supp(x) | x ∈ X}
is an infinite set, all of whose elements have the same fixed cardinality, and so we can
apply the ∆-system lemma2 to it and obtain an infinite subset Y ⊆ X that forms a ∆-
system. Now if we take n + 1 distinct elements y0, . . . , yn ∈ Y, the support of the sum
y0 + · · ·+ yn ∈ FS(Y) ⊆ FS(X) is guaranteed to have at least n + 1 elements, contradict-
ing that c(y0 + · · ·+ yn) = n. The proof is complete. �

We are grateful to the anonymous referee for pointing us toward using the ∆-system
lemma for the proof of Theorem 12, in a way that is reminiscent of [2, Theorem 1]. The ref-
eree also directed us towards the following observation. By performing a standard com-
pactness argument to the version of the ∆-system that was used in the previous proof, one
can obtain the following result: given any two fixed k and n, there exists a number ∆(k, n)
satisfying that whenever one has a sequence x1, . . . , x∆(k,n) of distinct sets of cardinality
k, it is possible to take n of them that form a ∆-system. Thus, given a group G, if we let c
be the colouring of the proof of Theorem 12, and 〈sn | n < ω〉 be an injective sequence of
ran(c), the same argument used in that proof actually shows that

G 9 (∆(|s0|, |s0|+ 1), ∆(|s1|, |s1|+ 1), . . . , ∆(|sn|, |sn|+ 1), . . .)FS,

2Or rather, the following version of the ∆-system lemma: if n < ω and X is an infinite family of sets of
cardinality n, then there is an infinite Y ⊆ X which forms a ∆-system. This is easy to prove by induction on
n, essentially using the technique outlined in [12, Exercise II.1, p. 86].
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meaning that there exists a colouring c : G −→ ω such that there is no X of cardinality
∆(|s0|, |s0| + 1) with FS(X) monochromatic in colour 0, and there is no X of cardinality
∆(|s1|, |s1|+ 1) with FS(X) monochromatic in colour 1, and so on and so forth (since for
any X of size ∆(|sn|, |sn|+ 1) with FS(X) monochromatic in colour sn, we would be able
to pick x0, . . . , x|sn| ∈ X forming a ∆-system, and so the support of x0 + · · ·+ x|sn| would
have at least |sn|+ 1-many elements, a contradiction). In fact, by appropriately refining
the colouring c one can get a similar negative arrow relation where the sequence inside
the parentheses is any arbitrary unbounded sequence. In particular, it is the case that
every infinite abelian group G satisfies the relation G 9 (2, 3, 4, . . .)FS.

The following theorem arises from consideration of van der Waerden’s theorem. Recall
that van der Waerden’s theorem [14] states that for every finite colouring of N, there will
be arbitrarily long arithmetic progressions that are monochromatic. In an abelian group
G, we define an arithmetic progression of length l to be a set of the form {a, a + b, . . . , a +
(l − 1)b} for a, b ∈ G and b 6= 0. It is possible to generalize van der Waerden’s theorem
by proving that, in any infinite abelian group, every finite colouring of the group will
give rise to arbitrarily long arithmetic progressions that are monochromatic (for example,
such a statement follows from the Central Sets Theorem for abelian groups in the same
way that the classical van der Waerden’s theorem follows from the Central Sets Theorem
for N, see e.g. [8, Corollary 14.13]). Now for infinite colourings, the situation splits:
in a Boolean group, an arithmetic progression {a, a + b, . . . , a + (l − 1)b} of length l is
simply equal to {a, a + b} (as long as l ≥ 2), so every colouring of a Boolean group with
less colours than the cardinality of the group is bound to have arbitrarily long arithmetic
progressions, just by the pigeonhole principle. On the other hand, when we consider
arbitrary abelian groups, with the restriction that they do not contain any elements of
order 2 (to completely discard the Boolean case), we obtain a negative result, even for
the shortest possible length of an arithmetic progression that would render the statement
nontrivial. We must point out that the following theorem, in the particular case where G
is the additive group of a vector space, was proved by Rado (see e.g. [10, Theorem 3.2]).
Although the proof is essentially the same, we still reproduce it here for the convenience
of the reader. We are grateful to the anonymous referee for pointing out Rado’s result, as
well as reference [10].

Theorem 13. Let G be an infinite abelian group with no elements of order 2. Then there exists
c : G −→ ω such that for no two a, b ∈ G with b 6= 0 do we have that {a, a + b, a + 2b} is
monochromatic for c.

Proof. Embed G in
⊕

p∈P

(⊕
α∈Ip Z[p∞]

)
. Just like in the proof of Theorem 12, we define

the colouring c on G by letting c(x) = (σ(πp(x)) | p ∈ P). Suppose that a, b ∈ G,
with b 6= 0 are such that {a, a + b, a + 2b} is monochromatic, say with colour (sp | p ∈
P). Since at least one of (in fact, at least two of) a, a + b, a + 2b is nonzero, and G does
not have elements of order 2, it follows that sp 6= ∅ for some p ∈ P \ {2}. Let β =
min(supp(πp(b))). Note that b(β) 6= 2b(β), and both of these are nonzero. Thus if a(β) 6=
0, we have that at least two of a(β), a(β) + b(β), a(β) + 2b(β) are nonzero, and for these
two elements, this nonzero entry occupies the same index within sp, however no two of
these three elements are equal, a contradiction. On the other hand, if a(β) = 0, then the
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entries a(β) + b(β), a(β) + 2b(β), which are distinct, correspond to the same element of sp
for a + b and a + 2b, but since these entries are distinct, we get another contradiction. �

We now switch from considering arithmetic progressions, to considering subgroups.
Given an abelian group G, we will use the symbol G → (κ)

〈·〉
θ to denote the statement

that for every colouring c : G −→ θ, there exists a subgroup H ⊆ G that can be generated
with κ-many elements and such that H \ {0} is monochromatic (by colouring 0 with its
own colour, different from everybody else’s, we can ensure that no nontrivial group is
monochromatic; hence we explicitly remove 0 from our subgroups to avoid trivially false
statements). If we look at an infinite Boolean group B, by Hindman’s theorem for every
colouring of B there will be an infinite X such that FS(X) is monochromatic. Note that, in
the Boolean case, FS(X) coincides with H \ {0}, where3 H is the subgroup of B generated
by X. Hence any infinite Boolean group B satisfies the statement B→ (ω)

〈·〉
2 (and by the

Folkman–Rado–Sanders theorem, for every (finite) n there exists an (finite) m such that, if
B is the Boolean group of size 2m, then B → (n)〈·〉2 ). The theorem below establishes that
this property fails for any groups that do not have Boolean subgroups.

Theorem 14. Let G be an abelian group with no elements of order 2. Then G 9 (1)〈·〉2 (and a
fortiori, G 9 (κ)

〈·〉
2 for every nonzero cardinal κ).

Proof. Embed G in
⊕

p∈P

(⊕
α∈Ip Z[p∞]

)
. We define the colouring c on G as follows.

Given a nonzero (the colour of 0 can be arbitrary) element x ∈ G, let px = min{p ∈
P \ {2} | πp(x) 6= 0}, and let αx = min(supp(πpx(x))). Let qx = x(αx), which will be
either a rational number (if px = 0), or the coset modulo Z of a rational number whose
denominator is a power of px (in which case we identify qx with the unique member of
this coset that lies in (0, 1)). We let c(x) be 0 or 1 according to whether ord2(qx) is even or
odd4.

Suppose, for the sake of contradiction, that H ⊆ G is a nontrivial subgroup with H \
{0}monochromatic. Pick x ∈ H \ {0}. There are two cases, the first of which is if px = 0.
Then qx ∈ Q, and so clearly ord2(q2x) = ord2(2qx) = ord2(qx) + 1, which implies that x
and 2x have distinct colours while both belonging to H \ {0}, a contradiction.

The second case is when px is a positive prime number. In this case, qx must be of the
form a

pk
x

for some k > 0, where (a, px) = 1. Since (a, px) = 1, the number a must be a

generator of the multiplicative group of units of the ring Z/pk
xZ, which means that, if we

pick our favourite b satisfying (b, px) = 1 and 0 < b <
⌊

pk
x

2

⌋
, there will be an integer c

such that ac ≡ b mod pk
x. Thus if we let y = cx, we will have that qy = ca

pk
x
= b

pk
x
, and

q2y = 2qy = 2b
pk

x
, since 0 < 2b < pk

x (that is, since 2b < pk
x, the representative in (0, 1) for

the coset of 2b
pk

x
is itself). Now, clearly ord2(q2y) = ord2

(
2b
pk

x

)
= ord2(2b) = ord2(b) + 1 =

3Provided that X is a linearly independent set over Z/2Z. Otherwise, FS(X) = H.
4Recall that, for q ∈ Q, ord2(q) = i if and only if q = 2i a

b , where a, b ∈ Z are coprime to 2.
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ord2

(
b
pk

x

)
+ 1 = ord2(qy) + 1, which means that y and 2y have different colours, while

both of them belong to H \ {0}, a contradiction. �

We will now address modules over rings. Let us consider first the field with two el-
ements, F2. Every module over F2 is a Boolean group, and conversely every Boolean
group is a module over F2. Furthermore, if B is a Boolean group and X ⊆ B, then FS(X)
is exactly5 H \ {0}, where H is the span of the set X, when viewing B as a module over
F2. Hence, if we let M→ (κ)

Span
θ denote the statement that for every colouring of M with

θ colours there exists a submodule N ⊆ M of dimension κ such that N \ {0} is monochro-
matic, we will have (as a consequence of Hindman’s theorem) that B → (ω)

Span
2 when-

ever B is an infinite Boolean group (equivalently, an infinite F2-module). The theorem
below establishes that we cannot have such a result for modules over other rings, at least
if the modules are free.

Theorem 15. Let R 6= F2 be a Unique Factorization Domain (UFD)6. Then for every free R-
module M, we have that M 9 (1)Span

2 (and a fortiori, M 9 (κ)
Span
2 for every positive κ).

Proof. Since R has no zero divisors, for each a ∈ R \ {0} we have that ar = as implies
r = s. Hence, the multiplicative action fa : R −→ R given by fa(r) = ar is an injection for
every a ∈ R \ {0}. Having chosen an arbitrary a, for every r ∈ R let Sr = {air : i ∈ N}.
We claim that if r, r′ ∈ R are such that Sr ∩ Sr′ 6= ∅, then either Sr ⊂ Sr′ or Sr′ ⊂ Sr.
For if Sr ∩ Sr′ 6= ∅, then by picking anr = an′r′ ∈ Sr ∩ Sr′ , and assuming without loss of
generality that n ≥ n′, we see that an−n′r = r′, which implies that r′ ∈ Sr and therefore
Sr′ ⊂ Sr.

Let us choose an irreducible element a ∈ R for the above considerations. Then any
chain of Srα must have a maximum. Suppose for the sake of contradiction that (Srα : α <
λ) is a strictly increasing sequence. We may choose rα such that for every ξ < α, rα /∈ Srξ

.
With the same notation, we observe that rξ = airα, and hence it follows that arbitrarily
large powers of a divide r0. This is absurd in a UFD, which gives us our contradiction.

By the axiom of choice, let X ⊂ R be such that for every r ∈ X, Sr is inclusion-maximal
in the set {Ss | s ∈ R} and for r, r′ ∈ X distinct, Sr ∩ Sr′ = ∅, and

⋃
r∈X Sr = R − {0}.

Then define g : R \ {0} → 2 as g(r) = i mod 2, where r = air0 for some r0 ∈ X.
If dim M = λ (where λ need not be infinite), then set the colouring of M =

⊕
λ R as

follows:
c(x) = g(x(min(supp(x))))

Suppose that there is a submodule N ⊆ M such that N \ {0} is monochromatic, and let
x ∈ N \ {0}. If α is the least index such that x(α) 6= 0, notice that g(ax(α)) = g(x(α)) + 1
mod 2. Thus, it follows that c(x) = g(x(α)) 6= g(ax(α)) = g((ax)(α)) = c(ax), while
x, ax ∈ M, a contradiction. �

In [6], it is proved that every finite colouring of an infinite vector space over a finite
field yields arbitrarily large, but finite, monochromatic affine subspaces. If the field is F2,

5Unless X is linearly dependent over F2, in which case FS(X) = H.
6That is, R is a commutative ring with unit, without zero divisors, where every element can be decom-

posed as a product of irreducible elements in a unique way (up to order and associates).
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then in fact we can get an infinite monochromatic affine subspace (this statement follows
directly from Hindman’s theorem applied to Boolean groups). In [15] it is proved that
every vector space over a finite field which is not F2 carries a colouring with countably
many colours such that every infinite affine space meets all of the colours. The following
result, along the lines of the ones just mentioned, is an immediate corollary of Theorem 13.
The one after that is another corollary of the same theorem, addressing the situation when
one replaces “affine subspace” with “translate of a subgroup”.

Corollary 16. Let R be a principal entire ring, R 6= F2, and M be a free R-module. Then there is
a colouring of M with countably many colours such that no nontrivial affine subspace can possibly
be monochromatic.

Corollary 17. Let G be an abelian group without elements of order 2. Then there exists c : G → ω
such that for no nontrivial subgroup H ⊆ G and a ∈ G can the set a + H be monochromatic.

Both corollaries are proved by noting that, if N ⊆ M is a submodule (resp. if H ⊆ G is
a subgroup) and a ∈ M (resp. a ∈ G) then the affine subspace a + N (resp. the set a + H)
must contain a, a + b, a + 2b for some nonzero b.
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