DISSERTATION SUBJECT ORAL SYLLABUS

David Fernández

October 23, 2012

1. INFINITARY COMBINATORICS[6, 13, 14, 16, 18]

- (a) Definition of a Δ -system, statement and proof of the Δ -system lemma.
- (b) Statement of MA (Martin's Axiom) and MA_{κ} , proof that MA_{ω} holds and $MA_{\mathfrak{c}}$ fails.
- (c) Definition of a club and a stationary subset of κ , of the club filter and proof that the club filter on a regular cardinal κ is κ -complete.
- (d) Statement and proof of the Pressing Down Lemma.
 - i. An application: Statement and proof of Thomas's theorem on automorphism towers of centreless groups.
- (e) Statement of \diamondsuit (the Diamond Axiom) and \clubsuit (the Club Axiom).
- (f) Trees
 - i. Statement and proof of König's Lemma.
 - ii. Definition of a κ -tree, a κ -Aronszajn tree and a κ^+ -Kurepa tree.
 - iii. Proof of existence of an ω_1 -Aronszajn tree.
 - iv. Definition of a $\kappa\text{-Suslin}$ tree, proof that $\kappa\text{-Suslin}$ implies $\kappa\text{-Aronszajn}.$
 - v. Definition of a Suslin line and of Suslin's hypothesis SH, proof that the existence of a Suslin tree is equivalent to the existence of a Suslin Line.
 - vi. MA_{ω_1} implies that there is no ω_1 -Suslin tree.
 - vii. \diamondsuit implies existence of a Suslin Tree.
- (g) Definition of Def(X) (Definable subsets of a set X), the constructible hierarchy, definition of L, the Axiom of Constructibility $\mathbf{V} = \mathbf{L}$.
- (h) Statement only: $\mathbf{L} \models \mathbf{V} = \mathbf{L}$, $\mathbf{V} = \mathbf{L}$ implies that there is a definable well-order of the universe; the Condensation Lemma.
- (i) $\mathbf{L} \vDash \mathsf{AC} + \mathsf{GCH}, \, \mathbf{L} \vDash \diamondsuit$.

2. LARGE CARDINALS[6, 13, 15]

- (a) Definition of a weakly inaccessible and a strongly inaccessible cardinal.
- (b) If κ is a strongly inaccessible cardinal, then $V_{\kappa} = H(\kappa) \vDash \mathsf{ZFC}$.
- (c) The existence of a weakly inaccessible cardinal is equiconsistent with that of a strongly inaccessible one, which in turn has consistency strength strictly greater than that of ZFC.
- (d) Definition of measurable cardinals, proof that measurable cardinals are strongly inaccessible.
- (e) Proof that κ is a measurable cardinal iff there exists a nontrivial elementary embedding $j : \mathbf{V} \longrightarrow M$, with critical point κ , into some transitive class M.
- (f) If there exists a measurable cardinal then $\mathbf{V} \neq \mathbf{L}$.
- (g) Definition of a supercompact cardinal and characterization in terms of elementary embeddings.
- (h) Definition of a Reinhardt cardinal, proof of the nonexistence of such cardinals (Kunen's inconsistency).
- (i) Statement of the axioms I1, I2, I3.

- 3. **FORCING**[1, 2, 3, 7, 8, 12, 13, 16, 17, 20]
 - (a) Definitions of \mathbb{P} -generic filter, the forcing language, the forcing relation, antichains, nice name, dense below p, predense, the κ -c.c., the Knaster condition, separative and non-atomic partial orders, λ -closed, complete embedding, dense embedding.
 - (b) Proof that κ -c.c. forcing notions preserve cofinalities and cardinals $\geq \kappa$ and κ -closed ones preserve cofinalities and cardinals $\leq \kappa$.
 - (c) Definition of strategically σ -closed forcing notion, proof that such notions don't add reals.
 - (d) Cohen forcing
 - i. Proof of the consistency of $\neg CH$.
 - ii. How to use forcing to obtain a model of $\neg AC$.
 - iii. Every countable forcing notion is equivalent to adding a Cohen real.
 - iv. In Cohen's model, $\omega_1 = \mathfrak{a}$ and $\mathfrak{d} = \mathfrak{c}$.
 - v. Proof that in Cohen's model, Borel's conjecture does not hold.
 - vi. Statement of the dual Borel's conjecture, proof that in Cohen's model the dual Borel conjecture holds.
 - (e) How to force CH, and \diamondsuit .
 - (f) The Lévy collapse.
 - (g) Forcing with a Suslin tree destroys its Suslinness.
 - (h) Namba forcing.
 - (i) Tree Prikry forcing.
 - (j) Iterated Forcing.
 - i. Definitions: α -stage iteration, direct limit, inverse limit, finite support iteration, countable support iteration.
 - ii. The finite support iteration of Cohen forcings is forcing equivalent to the finite support product of Cohen forcings.
 - iii. Finite support iterations add Cohen reals at limit stages.
 - iv. Proof of the consistency of $MA + \neg CH$.
 - (k) Proper Forcing.
 - i. Definitions of (\mathbb{P}, M) -generic, and of a proper forcing notion.
 - ii. Countably closed forcing notions and c.c.c. forcing notions are proper.
 - iii. Proper forcing notions preserve stationary subsets of $[\omega_1]^{\omega}$.
 - iv. Characterization of proper forcing notions in terms of games.
 - v. Sacks forcing, Mathias forcing, Laver forcing and Grigorieff forcing are proper.
 - vi. Proof of the preservation theorem: countable support iterations of proper forcings are proper.
 - vii. An application: a model where Borel's conjecture holds.
 - viii. Another application: a model with no P-points.
 - (l) The Proper Forcing Axiom PFA.
 - i. Statement of PFA.
 - ii. PFA is consistent provided that a supercompact cardinal exists.

4. CARDINAL INVARIANTS [4, 11, 19]

- (a) Definitions of an unbounded, dominating, centred, AD and MAD family; definition of a scale, a pseudointersection, a tower.
- (b) Definitions of $\mathfrak{a}, \mathfrak{b}, \mathfrak{d}, \mathfrak{p}, \mathfrak{t}, \mathfrak{m}$ and variations of \mathfrak{m} .
- (c) Proof that $\omega_1 \leq \mathfrak{m} \leq \mathfrak{m}(\sigma \text{centred}) \leq \mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{c}$, proof that $\mathfrak{b} \leq \mathfrak{a}$.
- (d) Proof that there exists a scale iff $\mathfrak{b} = \mathfrak{d}$.
- (e) Proof that \mathfrak{t} and \mathfrak{b} are regular, and $\mathrm{cf}(\mathfrak{d}) \geq \mathfrak{b}$.

- (f) $\operatorname{cov}(\mathcal{M}) = \mathfrak{m}(\operatorname{countable}) = \mathfrak{m}(\operatorname{Cohen}).$
- (g) $\mathfrak{p} = \mathfrak{m}(\sigma \text{centred})$, and \mathfrak{p} is regular.

5. ULTRAFILTERS ON SEMIGROUPS[2, 5, 9, 10]

- (a) Definition of filter, ultrafilter.
- (b) Definition of a P-point, a Q-point, a selective (or Ramsey) ultrafilter and some characterizations of these.
- (c) The Stone-Čech compactification of ω .
 - i. The topology of $\beta \omega$.
 - ii. $\beta\omega$ is compact Hausdorff, totally disconnected, of cardinality $2^{2^{\omega}}$ and has no nontrivial convergent sequences.
 - iii. Characterization of open and closed subsets of $\beta\omega$ as ideals and filters, respectively.
 - iv. The extension property, extension of a semigroup operation.
- (d) The semigroup $\beta \omega$.
 - i. The Ellis-Nukamura lemma.
 - ii. Hindman's finite sums theorem.
 - iii. Definition of strongly summable and of weakly summable ultrafilters.
 - iv. On abelian groups, strongly summable implies idempotent, which in turn implies weakly summable.
 - v. Definition of a union ultrafilter.
 - vi. Definition of an additive isomorphism between ultrafilters.
 - vii. Every strongly summable ultrafilter on $(\omega, +)$ is additively isomorphic to a union ultrafilter, and viceversa.
 - viii. Definition of sparse strongly summable ultrafilters.
 - ix. MA implies the existence of sparse strongly summable ultrafilters over any abelian group.
 - x. P-points are points of continuity of the function q + () for any $q \in \beta \omega$.

References

- [1] Abraham, Uri, *Proper Forcing*; in Magidor, Matthew and Kanamori, Akihiro (eds.), *Handbook of Set Theory*, 3 vols. Springer, 2010; pp. 333-394.
- [2] Bartoszyński, Tomek and Judah, Haim, Set Theory. The structure of the Real line. A.K. Peters, Wellesley, Massachusetts, 1995.
- [3] Baumgartner, James, *Iterated forcing*; in Mathias, A.R.D. *Surveys in Set Theory*, London Mathematical Society Lecture Note Series 87. Cambridge University Press, 1983, pp. 1-59.
- [4] Blass, Andreas, *Combinatorial Cardinal Characteristics of the Continuum*; in Magidor, Matthew and Kanamori, Akihiro (eds.), *Handbook of Set Theory*, 3 vols. Springer, 2010; pp. 395-489.
- [5] Blass, Andreas and Hindman, Neil, On strongly summable ultrafilters and union ultrafilters, Transactions of the American Mathematical Society 304 (1987), 83-99.
- [6] Devlin, Keith J., Constructibility; Perspectives in Mathematical Logic. Springer-Verlag, 1984.
- [7] Goldstern, answer to Cohen reals and strong measure zero sets in MathOverflow. Available online at http://mathoverflow.net/questions/63497/cohen-reals-and-strong-measure-zerosets.
- [8] Gupta, Amit Kumar, The proper forcing axiom, notes, available online at http://math.berkeley.edu/~akgupta/PFA.pdf.
- [9] Hindman, Neil; Protasov, Igor and Strauss, Dona, Strongly Summable Ultrafilters on Abelian Groups, Matem. Studii 10 (1998), 121-132.
- [10] Hindman, Neil and Strauss, Dona, Algebra in the Stone-Čech compactification, de Gruyter Expositions in Mathematics 27. Walter de Gruyter, Berlin-New York, 1998.

- [11] Hrušak, Michael, Invariantes cardinales del continuo, notes.
- [12] Jech, Thomas, Multiple forcing.
- [13] Jech, Thomas, Set Theory. The Third Millenium Edition, Revised and Expanded; Springer Monographs in Mathematics. Springer-Verlag, 2002.
- [14] Just, Winfried and Weese, Martin, Discovering Modern Set Theory II: Set-Theoretic Tools for Every Mathematician, Graduate Studies in Mathematics 18; American Mathematical Society. Providence, Rhode Island, 1995.
- [15] Kanamori, Akihiro, *The Higher Infinite*; Springer Monographs in Mathematics. Springer, Berlin Heidelberg, 2009.
- [16] Kunen, Kenneth, Set Theory. An Introduction to Independence Proofs; Studies in Logic and the Foundations of Mathematics 102. Elsevier, 1980.
- [17] Shelah, Saharon, Proper and Improper Forcing; Perspectives in Mathematical Logic, Springer-Verlag.
- [18] Thomas, Simon, *The Automorphism Tower Problem*, draft of book available online at www.math.rutgers.edu/~sthomas/book.ps.
- [19] van Douwen, Eric, The integers and topology, in Handbook of Set-Theoretic Topology.
- [20] Wohofsky, Wolfgang, On the existence of p-points and other ultrafilters in the Stone-Čechcompactification of ℕ, Diploma Thesis, Vienna University of Technology, 2008.