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Abstract. Ultrafilters are a tool, originating in mathematical logic and general topology, that
has steadily found more and more uses in multiple areas of mathematics, such as combina-
torics, dynamics, and algebra, among others. The purpose of this article is to introduce ul-
trafilters in a friendly manner and present some applications to the branch of combinatorics
known as Ramsey theory, culminating with a new ultrafilter-based proof of van der Waerden’s
theorem.

1. INTRODUCTION. Learning the extent to which ultrafilters are useful in multi-
ple branches of mathematics can be rather surprising, given the scarcity of occasions
when ultrafilters show up throughout the usual undergraduate and graduate curriculum.
A typical undergraduate student will for the most part finish her degree without ever
encountering the definition of an ultrafilter, and those few who do will probably do so
in the context of general topology, where they will very likely be told that ultrafilters
are one possible way of generalizing the notion of a convergent sequence. Slightly
more esoteric is the presence of ultrafilters in courses on model theory or set the-
ory, which are subjects that relatively few undergraduates, or even graduate students,
ever undertake for study. It has slowly become more apparent, however, that ultrafil-
ters are an extremely useful tool for a variety of different purposes in mathematics.
Nowadays, there is abundant literature about the interaction between ultrafilters and
combinatorics, particularly additive combinatorics (see, e.g., [14, 15, 17]). Also clas-
sical are the applications of ultrafilters to algebraic geometry, which for the most part
occur in the context of model theory (especially applications of ultraproducts—which
are a construction that arises naturally from ultrafilters—such as the Ax–Grothendieck
theorem [1] and the Ax–Kochen theorem [2]). More recently, new applications have
arisen in commutative algebra, for example, Schoutens’s work using ultraproducts of
commutative rings for a variety of purposes, e.g., generalizing the notion of tight clo-
sure to certain rings of characteristic 0 [22]. And it is impossible not to mention also
the many recent applications of methods from nonstandard analysis—a theory which
is tightly connected with ultrafilters—in a variety of combinatorial settings [5].

The main purpose of this article is to introduce a hypothetical reader who has never
encountered ultrafilters to the basic notions about them, mentioning enough results so
that some applications can be properly appreciated. In regard to the theory of ultrafil-
ters, we provide proofs for only a few select statements, those that are sufficiently sim-
ple to prove and useful for developing intuition. The remaining statements will only be
mentioned without proofs; on the other hand, with regard to the applications of these
tools to Ramsey theory, we provide full proofs in complete detail. This way we hope
that the reader will, after reading this article, be able to both understand other proofs
of Ramsey-theoretic statements that use ultrafilters, and have the tools to attempt their
own such proofs.

This article is organized in an oscillatory way, in the sense that we continuously
alternate between stating definitions and standard facts about ultrafilters, and provid-
ing a paradigmatic application of the newly introduced ideas. In Section 2, we begin
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by introducing the basic definitions concerning ultrafilters, as viewed combinatorially;
after a brief digression (a subsection where we prove the existence of nonprincipal ul-
trafilters), we show how this combinatorial device can contribute to proving Ramsey’s
theorem. In Section 3, we start by introducing some more theory, focused mostly on
the definition of a right-topological semigroup structure on the space of all ultrafilters;
immediately after that we follow up by showing (with full detail) how this theory can
be applied to prove Schur’s theorem, and hint at how the same ideas can be used to
prove the Folkman–Rado–Sanders theorem and Hindman’s theorem, which are gener-
alizations of Schur’s theorem. Finally, in Section 4, at the beginning we introduce yet
more theory, particularly about minimal idempotents and minimal ideals in the semi-
group of ultrafilters, in order to immediately follow up with an example of how these
newly introduced concepts can be applied, concretely, to prove van der Waerden’s the-
orem. The proofs of the applications from Sections 1 and 2 are standard (although
we believe that the way we sketch the proof of Hindman’s theorem differs slightly
from other presentations currently available); meanwhile, the specific proof of van der
Waerden’s theorem presented here—different from other ultrafilter proofs of the same
result, e.g., the one in [17, Theorem 14.1 & Corollary 14.2]—is, to the best of our
knowledge, completely new.

2. BASIC DEFINITIONS, COLORINGS OF GRAPHS. In this section we intro-
duce the definition of ultrafilters, attempting to provide some intuition along the way,
and then show how to apply these concepts to provide neat proofs of various ver-
sions of Ramsey’s theorem, which deals with colorings of graphs. We also provide a
self-contained proof that ultrafilters exist, but the reader who is mostly interested in
applications may skip the corresponding subsection without harm.

Definition and basic properties of ultrafilters.

Definition 1. Given a set X , an ultrafilter on X is a family u ⊆ ℘(X) satisfying

1. For every A,B ⊆ X , A ∩B ∈ u if and only if A ∈ u and B ∈ u;
2. for every A,B ⊆ X , A ∪B ∈ u if and only if A ∈ u or B ∈ u;
3. for every A ⊆ X , A ∈ u if and only if X \A /∈ u.

From the perspective of mathematical logic, the intuitive idea of an ultrafilter is that
it is a way of assigning truth values to all subsets ofX (here, we interpretA ∈ u as “A
is true” and A /∈ u as “A is false”). From this perspective, the definition simply says
that ultrafilters respect the fact that conjunction corresponds to intersection, disjunction
corresponds to union, and negation corresponds to complement.1 If one prefers to think
in terms of measure theory, then one can conceive of an ultrafilter as a finitely additive
{0, 1}-valued measure on ℘(X) (the power set of X), the translation being given by
interpreting the measure of a subsetA ⊆ X as 1 if and only ifA ∈ u, and 0 otherwise.

The logical interpretation makes it clear that, in Definition 1, one could assume
only conditions (1) and (3), and this would automatically imply (2)—alternatively,
one could assume (2) and (3) and this would imply condition (1)—because of the
well-known classical result in propositional logic that every binary connective can be
written in terms of conjunction and negation; alternatively, every binary connective can
be written in terms of disjunction and negation. In fact, every binary connective can

1As a matter of fact, if one sees ℘(X) as a Boolean algebra, equipped with the operations of union for
joins, intersection for meets, and complement for negatives, then one can clearly see that the definition stated
above is equivalent to defining an ultrafilter as the preimage of 1 under a Boolean algebra homomorphism
℘(X) −→ {0, 1}.

2 ©



be written in terms of the Sheffer stroke, which means that we could have equivalently
defined an ultrafilter as a family u of subsets of X satisfying that

X \ (A ∩B) ∈ u if and only if (not both A ∈ u and B ∈ u),

for all A,B ⊆ X .
Notice that, ifX = ∅, then there are no ultrafilters overX (for the definition would

require that, if u is an ultrafilter on X = ∅, then ∅ ∈ u if and only if ∅ = X \ ∅ /∈
u). Thus, from now on, we focus on ultrafilters over nonempty sets. Observe that if
X 6= ∅ and u is an ultrafilter on X then u is nonempty (because now ∅ and X =
X \∅ are distinct, and by condition (3) in Definition 1 we must have one of these two
sets belonging to u).

Proposition 2. Every ultrafilter is closed upwards. That is, if X is a set and u is an
ultrafilter on X , then whenever A ∈ u and A ⊆ B ⊆ X we must have B ∈ u. In
particular, we always have X ∈ u (and consequently ∅ /∈ u).

Proof. Suppose that A ∈ u and A ⊆ B ⊆ X . Since A ∈ u, we (quite tautologically)
have that A ∈ u or B ∈ u. Hence, by condition (2) in Definition 1, it must be the case
that B = A ∪B ∈ u.

The claim in the second sentence of Proposition 2 follows immediately from the
fact that every ultrafilter is nonempty, as remarked right before the statement of this
proposition.

Proposition 3. Let X be a set, and let u be an ultrafilter on X . If A ∈ u and
A = A1 ∪ · · · ∪ An, then there exists an i such that Ai ∈ u; moreover, if the Aj

are pairwise disjoint then this i is unique. In particular, for every finite partition of X ,
exactly one piece of the partition belongs to u.

Proof. The first part of the proposition is a straightforward induction, where the base
case n = 2 follows directly from condition (2) in Definition 1. For the second part,
notice that if the Aj were pairwise disjoint and we had Ai, Ak ∈ u for i 6= k, then we
would also have ∅ = Ai ∩Ak ∈ u, contradicting Proposition 2.

The easiest example of an ultrafilter is the following: if X is a set and x ∈ X , then
the family {A ⊆ X | x ∈ A} is an ultrafilter on X , as the reader should be able to
verify straightforwardly. Ultrafilters fitting this description receive a special name.

Definition 4. Given a set X , an ultrafilter u on X is said to be principal if there
exists an x ∈ X with ux := {A ⊆ X | x ∈ A} = u. Otherwise, u will be said to be
nonprincipal.

If one thinks in measure-theoretic terms, principal ultrafilters would correspond to
Dirac measures: measures that are concentrated on a single point x, in the sense that
the measure of any set A is 1 if and only if x ∈ A, and 0 otherwise. The next theorem
precisely characterizes principal ultrafilters.

Theorem 5. LetX be a set and let u be an ultrafilter onX . Then u is principal if and
only if there exists a finite F ⊆ X with F ∈ u.

Proof. If u is principal, then there is an x ∈ X such that u = ux = {A ⊆ X | A ∈
u}; in particular {x} ∈ ux = u. Conversely, suppose that F ⊆ X is a finite set (say
F = {x1, . . . , xn}) with F ∈ u. Then F = {x1} ∪ · · · ∪ {xn}, so by Proposition 3,
there is an i ∈ {1, . . . , n} such that {xi} ∈ u. We now claim that u = uxi : to see
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this, letA ⊆ X and note thatA ∈ u if and only ifA ∈ u and {xi} ∈ u, which in turn
happens (by condition (1) in Definition 1) if and only if A ∩ {xi} ∈ u. Notice that

A ∩ {xi} =
{
{xi} if xi ∈ A
∅ otherwise.

Since ∅ /∈ u, it follows that A ∈ u if and only if xi ∈ A, so that u = uxi .

This immediately raises the question whether there is a setX over which a nonprin-
cipal ultrafilter exists. Such a set must be infinite by Theorem 5. We devote the next
subsection to proving that, for every infinite set X , there exists a nonprincipal ultrafil-
ter u over X . The reader who wishes to take this statement on faith and continue with
applications is advised to skip the subsection.

Existence of nonprincipal ultrafilters. Throughout this subsection, X is assumed to
be an infinite set. The objective of the section is to prove the existence of a nonprincipal
ultrafilter on X .

Definition 6. We will say that a family F of subsets of X is nice if it is nonempty,
closed under intersections (i.e., if A,B ∈ F then A ∩B ∈ F ), and ∅ /∈ F .

Notice that the collection of all nice families is partially ordered by inclusion. It can
be readily checked that this collection thus partially ordered satisfies the hypothesis of
Zorn’s lemma (that every chain has an upper bound, in this case given by the union
of the chain), and hence there exist maximal nice families. Moreover, whenever F
is a nice family, there exists a maximal nice family M with F ⊆ M. We will use
this fact to prove the existence of nonprincipal ultrafilters over X , which will follow
immediately after the following two lemmas.

Lemma 7. LetM be a maximal nice family. If a set A ⊆ X intersects every element
ofM, then A ∈M. In particular, M is closed upwards.

Proof. Since {X} ∪M is also a nice family containingM, by maximality we have
M =M∪{X} and soX ∈M. Now suppose thatA ⊆ X intersects everyB ∈M.
Then the family

{A ∩B | B ∈M} ∪M

is nice and contains M, so by maximality M =M∪ {A ∩ B | B ∈ M} and, in
particular (since X ∈ M), A = A ∩ X ∈ M. This finishes the proof of the first
statement. For the second statement, if A ∈ M and A ⊆ B, then for every C ∈ M
we have B ∩ C ⊇ A ∩ C ∈ M; since ∅ /∈ M we get B ∩ C 6= ∅. By the first
statement, it follows that B ∈M.

Lemma 8. A family of subsets of X is maximal nice if and only if it is an ultrafilter.

Proof. We begin by proving the reverse implication. If u is an ultrafilter, it follows
immediately that u is a nice family. Now, suppose that F is another nice family with
u ⊆ F . If the inclusion were proper, taking any A ∈ F \ u we would have that X \
A ∈ u ⊆ F , and therefore ∅ = A ∩ (X \ A) ∈ F , a contradiction. Hence, u = F
and we are done.

Now for the forward implication, letM be a maximal nice family. We shall use the
Sheffer stroke characterization of ultrafilters (see the second paragraph after Defini-
tion 1), that is, we will prove thatM is an ultrafilter by showing that, for A,B ⊆ X ,
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we have X \ (A ∩ B) ∈ M if and only if not both of A ∈ M, B ∈ M hold. So
suppose thatX \ (A ∩B) ∈M. Since ∅ /∈M andM is closed under intersections,
this means we must have A ∩ B /∈ M. By Lemma 7 this implies that there exists a
C ∈ M that is disjoint from A ∩ B. If A ∈ M then A ∩ C ∈ M is disjoint from
B; sinceM is closed under intersections and does not contain ∅, we must have that
B /∈M. Following the same reasoning with the roles ofA andB interchanged shows
that if B ∈ M then A /∈ M; in either case we have proved that not both of A ∈ M,
B ∈M hold. Conversely, suppose that not both of A ∈M, B ∈M hold. Let us say
that A /∈ M (the proof is entirely symmetric if we assume B /∈ M instead). Then
by Lemma 7, there is a C ∈ M that is disjoint from A, which in turn implies that
C ⊆ X \ A. Since X \ A ⊆ X \ (A ∩ B) andM is closed upwards by Lemma 7,
we conclude that X \ (A ∩B) ∈M, and we are done.

Remark 9. Ultrafilters are usually defined as maximal filters, where a filter is defined
to be a family of subsets of X that is nonempty, closed upwards and closed under
intersections, and does not contain ∅. So the only difference between a filter and a nice
family as defined here is the requirement that the family be closed upwards. However,
by Lemma 7, this distinction vanishes once we focus on maximal objects (that is, being
a maximal filter is equivalent to being a maximal nice family), and so by Lemma 8,
we see that our (somewhat nonstandard2) definition of an ultrafilter is equivalent to the
most common one.

Corollary 10. If X is an arbitrary infinite set, then there exists a nonprincipal ultra-
filter on X .

Proof. Given such an X , notice that the family of all cofinite subsets of X ,

Fr = {A ⊆ X | X \A is finite}

(usually known as the Fréchet filter on X), is a nice family. Hence, by Zorn’s lemma,
there exists an ultrafilter u with Fr ⊆ u. Clearly u is nonprincipal (otherwise there
would be a finite F with F ∈ u by Theorem 5, and since X \ F ∈ Fr ⊆ u, this
would mean that ∅ = F ∩ (X \ F ) ∈ u, a contradiction).

Remark 11. Even though in this article we used Zorn’s lemma to prove the existence
of nonprincipal ultrafilters, we do not actually need the full strength of the axiom of
choice for this. In fact, the statement that for every infinite X there exists a nonprin-
cipal ultrafilter on X is equivalent over the ZF axioms to the Boolean prime ideal
theorem (which is in turn equivalent to Tychonoff’s theorem for Hausdorff topological
spaces, and strictly weaker than the full axiom of choice). See [18] for an extensive
compendium of statements weaker than the axiom of choice and their multiple rela-
tions of implication and equivalence.

Application: Ramsey’s theorem. A paradigmatic example of a Ramsey-theoretic re-
sult is the statement that in every party with at least six attendees, one can find either
three of them that do not know each other, or three of them that mutually know each
other. In mathematical terms, we can model the situation by means of a complete graph
with as many vertices as attendees at the party, together with a coloring of the edges
of this graph—say, we declare an edge to be red if the two extremes of that edge are
vertices representing two people who know each other, and we make the edge blue
otherwise. Then, the result just mentioned states that, regardless of what the coloring

2The author first came in contact with this nonstandard definition in a set of notes by Andreas Blass.
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of the edges is, we will always be able to find a triangle that is either all red or all blue:
we say that we can always find a monochromatic triangle.

This is a recurring theme within Ramsey theory: one colors a structure (mathemati-
cally, colorings are represented by functions whose codomain is some finite set; in this
article, we will use the set {red,blue}),3 and if the structure is large enough, then one
can usually find some sufficiently rich monochromatic substructures.

Let us prove the weaker version of the aforementioned theorem where we require
the party to contain infinitely many attendees.

Theorem 12. Let G = (V,E) be an infinite complete graph. For every coloring
c : E −→ {red, blue}, there are three vertices x, y, z such that the subgraph of G
induced by {x, y, z} is monochromatic.

Proof. Let u be a nonprincipal ultrafilter on V . Upon fixing a vertex v ∈ V , notice
that we have a partition of V

V = {v} ∪ {w ∈ V | c(vw) = red} ∪ {w ∈ V | c(vw) = blue}.

Exactly one of these pieces belongs to u by Proposition 3. Since u is nonprincipal,
{v} /∈ u so either {w ∈ V | c(vw) = red} ∈ u, in which case we will say that v is
u-red, or {w ∈ V | c(vw) = blue} ∈ u, in which case we will say that v is u-blue.

The procedure described in the previous paragraph can, of course, be carried out for
every vertex v ∈ V ; so each v ∈ V is either u-red or u-blue. This induces yet another
partition of V , given by

V = {v ∈ V | v is u-red} ∪ {v ∈ V | v is u-blue},

and exactly one piece of this partition belongs to u, again by Proposition 3. Let us
assume, without loss of generality, that A = {v ∈ V | v is u-red} ∈ u, and con-
struct a monochromatic triangle in color red—otherwise, we would be able to con-
struct a monochromatic triangle in color blue, in an entirely symmetric fashion. For
each v ∈ A, the fact that v is u-red means that u contains the set Av = {w ∈ V |
c(vw) = red}. We begin by taking v1 ∈ A and v2 ∈ A ∩ Av1 . We can do this be-
cause, since A ∈ u, we have that A is nonempty; now v1 ∈ A and so Av1 ∈ u, there-
fore we have A ∩ Av1 ∈ u (because ultrafilters are closed under finite intersections)
and in particular A ∩ Av1 is nonempty. Since v2 ∈ Av1 , we have c(v1v2) = red.
Now, since v2 ∈ A, we have Av2 ∈ u and so we can pick a v3 ∈ Av1 ∩Av2 , because
Av1 , Av2 ∈ u and consequentlyAv1 ∩Av2 ∈ u; in particular,Av1 ∩Av2 is nonempty.
Since v3 ∈ Av1 , we have c(v1v3) = red; since v3 ∈ Av2 , we have c(v2v3) = red. We
already argued that c(v1v2) = red as well; it follows that the triangle formed by the
vertices v1, v2, v3 is monochromatic in color red, and we are done.

The reader might rightly complain that we did not prove the theorem that we an-
nounced at the beginning—the one where the graph G only has 6 vertices—but rather
a significantly weaker version of it. In our defense, we will point out that, by prov-
ing this weaker version of the theorem the way we did, we can now readily improve

3Throughout this article we consider colorings with only two colors in order to simplify matters, since for
the problems that we study here this does not make a difference, and the same arguments work with any finite
number of colors. However, the reader should be warned that this is not the case in certain contexts, as there
are examples of Ramsey-type properties that are true for 2-colorings but fail for arbitrary finite colorings [4].
As a particularly striking recent example, for every coloring of N with two colors, there are infinitely many
monochromatic solutions to the Diophantine equation x+ y = z2, whereas there exists a coloring of N with
three colors such that no nontrivial solution to the same equation can be monochromatic [11].
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the theorem, not by reducing the number of vertices needed from the graph G, but
by increasing the size of the monochromatic structure. To see this, notice that, at the
moment when we picked v3 in the proof above, we could have picked it to be an el-
ement of A ∩ Av1 ∩ Av2 (since ultrafilters are closed under finite intersections, this
set is an element of u, and hence nonempty). Then, the fact that v3 ∈ Av1 ∩ Av2 still
ensures that the triangle formed by the vertices v1, v2, v3 is monochromatic in color
red, whereas the fact that v3 ∈ A implies that, furthermore, we also have Av3 ∈ u.
Hence, we can now also pick yet another vertex v4 ∈ A ∩ Av1 ∩ Av2 ∩ Av3 (this
set is nonempty by virtue of its belonging to u), and see that, for each i ∈ {1, 2, 3},
v4 ∈ Avi and therefore c(viv4) = red. Thus we have obtained vertices v1, v2, v3, v4
such that all the edges between these four vertices are red; we say that the (complete)
subgraph of G induced by {v1, v2, v3, v4} is monochromatic in color red; note that,
furthermore, we have v4 ∈ A.

We can continue the process described in the previous paragraph for as long
as we wish: reasoning inductively, if we already have n vertices v1, . . . , vn such
that Av1 , . . . , Avn ∈ u and such that the (complete) subgraph of G induced by
{v1, . . . , vn} is monochromatic in color red, use the fact that ultrafilters are closed
under finite intersections to pick a further vertex vn+1 ∈ A ∩Av1 ∩ · · · ∩Avn (since
the latter set belongs to u and hence is nonempty). For each i ∈ {1, . . . , n}, the fact
that vn+1 ∈ Avi means that c(vivn+1) = red; this, together with the fact that all the
edges between {v1, . . . , vn} are red implies that the complete subgraph of G induced
by the vertices {v1, . . . , vn, vn+1} is also monochromatic in color red. On the other
hand, the fact that vn+1 ∈ A implies thatAvn+1

∈ u and so the induction can continue
for one more step. Hence, we can obtain arbitrarily large (complete) subgraphs of G
that are monochromatic; in fact, by following through the induction for all the natural
numbers, one actually obtains an infinite complete subgraph of G (the one induced
by the set of vertices {vn | n ∈ N}) that is monochromatic. We record this fact in the
theorem below.

Theorem 13 (Ramsey [20]). LetG = (V,E) be an infinite complete graph. For every
coloring c : E −→ {red, blue}, there exists an infinite subset X ⊆ V such that the
subgraph of G induced by X is monochromatic.

To finish the section, we wish to point out a couple of important concepts in Ramsey
theory, namely partition regularity and weak partition regularity. An upwards closed
family F of subsets of N is called weakly partition regular if for every finite partition
of N, one of the cells belong to F , and it is called partition regular if for every par-
tition of a member of F , one of the cells belongs to F . In an abstract sense, it can
be said that Ramsey theory consists of the study of weak partition regular and parti-
tion regular properties. The reader is encouraged to work out the translation between
the Ramsey-theoretic statements proved in this article and the weak partition regular-
ity of certain families of subsets of N (in fact, for all the statements addressed in this
article, the corresponding family of sets will be partition regular). Regarding Ramsey-
theoretic statements in this light makes the connection with ultrafilters very explicit,
since a family F is weakly partition regular if and only if there is an ultrafilter u with
u ⊆ F [17, Theorem 5.7], and it is partition regular if and only if F is a union of
ultrafilters [17, Theorem 3.11].

3. ADDITIVE STRUCTURE. We will now introduce the algebraic-topological
structure of the collection of all ultrafilters on a given set, and then illustrate how
the theory about this structure allows us to prove some Ramsey-theoretic results in
additive combinatorics. Since we are mostly interested in illustrating the applications

ULTRAFILTERS AND RAMSEY THEORY 7



of the theory, rather than in presenting the theory itself, in the first subsection we will
for the most part simply mention the relevant results without proofs.4 In the following
subsection we will, on the other hand, fully explain the applications of these results
with all the details.

Algebra in the Čech–Stone compactification. Given a set X , we denote the set of
all ultrafilters on X by βX . The set βX can be topologized by declaring, for each
A ⊆ X , the set

A = {u ∈ βX | A ∈ u}

to be a basic open set. With this topology (known as the Stone topology), the space
βX is compact Hausdorff, known as the Čech–Stone compactification of X , and it
contains a dense copy of X via the embedding x 7−→ ux that maps each point x ∈ X
to the corresponding principal ultrafilter ux. Once we identify X with its copy within
βX (such a copy is a discrete subspace of βX , so we can think of X as a discrete
space that is embedded into βX), we can see that A is a clopen set which is really the
closure of A ⊆ X within βX . The Čech–Stone remainder of X is the closed (and
hence compact) subspace of βX consisting of all nonprincipal ultrafilters on X; this
subspace is usually denoted X∗ = βX \X . Given two sets X,Y , every function f :
X −→ Y lifts to a (unique) continuous extension (still denoted by f , and known as the
Čech–Stone extension of f ) f : βX −→ βY , which is given by f(u) = {A ⊆ Y |
f−1[A] ∈ u}. The ultrafilter f(u) is sometimes known as the Rudin–Keisler image of
the ultrafilter u; this ultrafilter can also be described as the ultrafilter on Y generated
by the family {f [A] | A ∈ u}.

The previous paragraph describes the topological structure of βX , and we will now
proceed to describe the corresponding algebraic structure. Suppose that, rather than a
bare set X without any additional structure, we have a semigroup operation ∗ on X .
We can now define a semigroup operation on βX by means of the formula

u ∗ v = {A ⊆ X | {x ∈ X | {y ∈ X | x ∗ y ∈ A} ∈ v} ∈ u};

this operation turns βX , equipped also with the Stone topology, into a compact right-
topological semigroup. This means that βX is a semigroup when equipped with the
operation ∗ and, for each fixed v ∈ βX , the right translation mapping u 7−→ u ∗ v is a
continuous function from βX to βX (although left translations v 7−→ u ∗ v need not
be continuous, and the semigroup operation ∗ need not be jointly continuous). Further-
more, if the semigroup X is sufficiently well-behaved,5 then the set X∗ = βX \X
of nonprincipal ultrafilters on X is a closed subsemigroup of βX , and hence X∗ is a
compact right-topological semigroup in its own right. Whenever we have semigroup
operations on both sets X and Y , and a function f : X −→ Y is a semigroup ho-
momorphism (meaning f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X), the corresponding
Čech–Stone extension f : βX −→ βY will be a continuous semigroup homomor-
phism.

The definition of the semigroup operation on βX might not look very natural at first
sight, but it in fact arises naturally in various different ways. For example, remember
that when we first introduced ultrafilters we mentioned that they can be thought of as

4The reader interested in delving deep into the development of this theory can consult [17], or, for a rather
compact, but complete, exposition of all the tools used in this article, see [24, Section 2.1, pp. 27–30].

5Technically, the condition needed on the semigroup X is that for every finite F ⊆ X and for every infinite
A ⊆ X there are finitely many a1, . . . , an ∈ A such that the set {x ∈ X | ai ∗ x ∈ F for all i} is finite.
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(finitely additive) measures on the set X . Say that we have two ultrafilters u, v ∈ βX
and we use the letters µ, ν to denote the respective measures (thus µ(A) = 1 if and
only if A ∈ u, and µ(A) = 0 otherwise; similarly ν(A) = 1 if and only if A ∈ v and
ν(A) = 0 otherwise). Then the measure µ � ν that corresponds to the ultrafilter u ∗ v
is simply given by

(µ � ν)(A) =
∫
x∈X

∫
y∈X

χA(x ∗ y)dν(y)dµ(x)

(where χA is the characteristic function of A), for every A ⊆ X . Thus, we can see
that, from the appropriate viewpoint, the semigroup operation u ∗ v behaves like a
convolution.

To finish this section, we will prove a crucial lemma that is of central importance
for the algebra in the Čech–Stone compactification. We first introduce the relevant
terminology.

Definition 14.

1. Let (S, ∗) be a semigroup. The element x ∈ S is said to be idempotent if it
satisfies x ∗ x = x.

2. A triple (S, ∗, τ) is a right-topological semigroup if (S, ∗) is a semigroup and
(S, τ) is a Hausdorff topological space such that, for every s ∈ S, the right-
translation mapping S −→ S given by t 7−→ t ∗ s is continuous.

Hence, one of the crucial facts that we outlined in this section is that, wheneverX is
a set with a semigroup operation ∗, the triple (βX, ∗, τ) is a compact right-topological
semigroup (where ∗ denotes the extension of the operation ∗ : X ×X −→ X to all
of βX and τ denotes the Stone topology on βX).

Lemma 15 (Ellis–Numakura [6, 19]). If (S, ∗, τ) is a compact right-topological
semigroup, then there exists an idempotent element s ∈ S.

Proof. To begin with, we remark that, since S is compact and Hausdorff, every subset
K ⊆ S is closed if and only if it is compact, and so we will utilize the words “closed”
and “compact” interchangeably throughout the proof.

We start by noting that the collection of all nonempty T ⊆ S that are subsemigroups
of S (that is, closed under the operation ∗) and compact, ordered by reverse inclu-
sion, satisfies the hypotheses of Zorn’s lemma (for any ⊆-linearly ordered collection
of compact subsemigroups of S, its intersection is also a compact subsemigroup—
furthermore, nonempty, by compactness of S) and therefore there exists a minimal
closed subsemigroup T ⊆ S. Let s ∈ T be arbitrary. Then T ∗ s ⊆ T , and it is
readily checked that T ∗ s is a subsemigroup of S which is, furthermore, compact
(as it is the continuous image of the compact set T under the continuous mapping
t 7−→ t ∗ s). Hence, by minimality of T , we must have T ∗ s = T ; in particular,
s ∈ T ∗ s. This shows that the set {t ∈ T | t ∗ s = s} is nonempty. Furthermore,
the set {t ∈ T | t ∗ s = s} ⊆ T is compact (as it is the preimage of the closed set {s}
under the continuous mapping t 7−→ t ∗ s), and it can be readily checked that it is a
subsemigroup of S; so by minimality of T , we must have T = {t ∈ T | t ∗ s = s}
and in particular, since s ∈ T , we have s ∗ s = s, which shows that s is idempotent
and finishes the proof.

Corollary 16. Let (X, ∗) be a (sufficiently well-behaved, see footnote 5) semigroup.
Then there are idempotent elements (that is, ultrafilters u such that u ∗ u = u) in βX .
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Furthermore, whenever Z ⊆ βX is a closed subsemigroup, one can find an idempo-
tent ultrafilter u ∈ Z. In particular, there are nonprincipal idempotent ultrafilters on
X .

Proof. This is immediate from the fact that βX is a compact right-topological semi-
group (in particular, any closed subset of it is also compact) and from Lemma 15.
The last statement follows from the fact that the set X∗ = βX \X of nonprincipal
ultrafilters on X is a closed subsemigroup of βX .

Suppose that we have a semigroup X and an idempotent ultrafilter u ∈ βX . Using
the definition of the semigroup operation ∗ on βX , we see that, for every A ∈ u, it is
the case that (since u ∗ u = u and thus A ∈ u ∗ u)

{x ∈ X | {y ∈ X | x ∗ y ∈ A} ∈ u} ∈ u.

This observation will be extremely important in the applications that we illustrate in
the following subsection.

Application: Schur, Folkman–Rado–Sanders, and Hindman’s theorems. Leaving
graph theory behind, we can also encounter a large number of Ramsey-theoretic re-
sults in the field of additive combinatorics; as the name suggests, we are talking here
about results where the monochromatic structures obtained are defined, in one way
or another, in terms of the addition operation. Possibly the oldest result in this vein
is Schur’s theorem [23], which establishes that, whenever we color the elements of
N with finitely many colors (that is, whenever we partition the set N into finitely
many cells), it is always possible to find two distinct elements x, y such that the set
{x, y, x+ y} is monochromatic. With the theory presented so far, we are in a position
to state and prove this theorem right away.

Theorem 17 (Schur [23]). Suppose that we have a coloring c : N −→ {red,blue}.
Then there exists a monochromatic set of the form {x, y, x+ y}.

Proof. Use the Ellis–Numakura lemma (or rather, Corollary 16) to obtain a nonprinci-
pal idempotent ultrafilter u on N. Since N = {n | n is red} ∪ {n | n is blue}, we have
that either {n | n is red} ∈ u or {n | n is blue} ∈ u; suppose without loss of gener-
ality (the proof being entirely symmetric otherwise) that A = {n | n is blue} ∈ u.
Since u is an idempotent, we know that

A? = A ∩ {n ∈ N | {m ∈ N | n+m ∈ A} ∈ u} ∈ u.

Take an x ∈ A?. Then x is blue, and moreover, the set

Ax = {m ∈ N | x+m ∈ A} ∈ u,

so we can also take a y ∈ Ax ∩A. Thus, we will have that (since y ∈ A) y is also blue,
and, moreover, since y ∈ Ax, we have that x + y ∈ A and thus x + y is also blue.
Hence, we have shown that the set {x, y, x+ y} consists entirely of blue elements.

Notice how, in the previous proof, the fact that the set A is precisely the set of all
elements that were colored blue is not important for the proof itself. If we erase all
references to colors from the previous proof, and instead just work with an arbitrary
setA satisfying thatA ∈ u, everything works out just as nicely, and we obtain a useful
observation.
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Remark 18. Our proof of Theorem 17 actually shows the following: whenever u is
a nonprincipal idempotent ultrafilter on N, for any A ∈ u we can find two distinct
elements x, y such that {x, y, x+ y} ⊆ A.

Using Remark 18, we can improve Theorem 17 to obtain even more: Suppose that
N is colored with colors blue and red, take a nonprincipal idempotent ultrafilter u over
N, and assume without loss of generality that A = {n ∈ N | n is blue} ∈ u. Since
u is idempotent, we have {n ∈ A | {m ∈ A | n +m ∈ A} ∈ u} ∈ u and so we
can choose an x belonging to that set; this means both that x is blue and that the set
B = {m ∈ N | x+m is blue} ∈ u. By Remark 18, we can now find two elements
y, z such that y, z, y + z ∈ A ∩ B (because, since ultrafilters are closed under finite
intersections, we have A ∩ B ∈ u). This means both that y, z, y + z are blue (since
they are elements ofA), and also (by the definition ofB) that x+ y, x+ z, x+ y + z
are blue. We have thus concluded that the entire set {x, y, z, x+ y, x+ z, y + z, x+
y + z} consists of blue elements (or, had u contained the set of red elements instead,
we would have obtained such a set consisting of red elements). This means that for
every coloring of N with two colors, it is possible to obtain three distinct elements
x, y, z such that the corresponding set of all finite sums {x, y, z, x + y, x + z, y +
z, x + y + z} is monochromatic. As we may expect by now, this theorem can be
significantly generalized, and we will now show how.

Definition 19. Given a set of numbers X ⊆ N, the set of finite sums of X is defined
to be

FS(X) = {x1 + · · ·+ xn | n ∈ N, x1, . . . , xn are distinct and x1, . . . , xn ∈ X}

=

{∑
x∈F

x | F ⊆ X is finite nonempty

}
.

Theorem 20 (Folkman and Rado (see [10], Thms. 3.5 and 3.4) , Sanders [21]).
Given a coloring of N with colors red and blue, and given an n ∈ N, it is possible to
find elements x1, . . . , xn ∈ N such that the set FS(x1, . . . , xn) is monochromatic.

Proof. Let u be a nonprincipal idempotent ultrafilter on N. We proceed to show, by
induction on n ∈ N, that if A ∈ u then there are n distinct elements x1, . . . , xn such
that FS(x1, . . . , xn) ⊆ A. The case n = 1 is obvious, so suppose the statement holds
for n, and let A ∈ u. Since u is an idempotent element, we have A? = A ∩ {x ∈ N |
{y ∈ N | x+ y ∈ A} ∈ u} ∈ u. In particular A? is nonempty and so we can choose
an x1 ∈ A?. This means that x1 ∈ A and furthermore B = A ∩ {y ∈ N | x1 + y ∈
A} ∈ u; so by induction hypothesis we can find distinct elements x2, . . . , xn+1 such
that FS(x2, . . . , xn+1) ⊆ B. Note that, if z ∈ FS(x1, . . . , xn+1), then either z ∈
FS(x2, . . . , xn+1) ⊆ B ⊆ A, or z = x1 + y for some y ∈ FS(x2, . . . , xn+1) ⊆ B,
which means, by definition of B, that z = x1 + y ∈ A. In either case we get z ∈ A,
which implies that FS(x1, . . . , xn+1) ⊆ A, finishing the induction.

Now suppose that N has been colored with colors blue and red, and let n ∈ N.
Exactly one of the two sets {x ∈ N | x is blue} and {x ∈ N | x is red} belongs to u;
let us denote whichever set this is by A. Then, by the statement proved in the previous
paragraph, there are elements x1, . . . , xn such that FS(x1, . . . , xn) ⊆ A. By choice
of A, this means precisely that FS(x1, . . . , xn) is monochromatic.

A more careful look at the proof of Theorem 20 reveals that it should, in fact, be
possible to use the same ideas to prove an even stronger result, in which one finds in-
finitely many elements whose set of finite sums is monochromatic. This result is known

ULTRAFILTERS AND RAMSEY THEORY 11



as Hindman’s theorem, and its history is quite interesting. What is now known as Hind-
man’s theorem was, for a relatively long time, a conjecture of Graham and Rothschild
(asked as a question in [9, p. 291], and attributed to those authors as a conjecture by
Erdős in [7, p. 122]); it was eventually proved by Hindman using involved combina-
torial arguments, and subsequently Baumgartner [3] found a somewhat simpler, but
still purely combinatorial proof. However, Galvin, even before Hindman’s proof (back
when Hindman’s theorem was still just a conjecture), had realized that the existence
of an ultrafilter with a certain combinatorial property would readily imply the theo-
rem, but he was unable to prove that these special ultrafilters exist. (In retrospect, we
know that the ultrafilters that Galvin considered are precisely the idempotent ultrafil-
ters.) Hindman [12] proved that these special ultrafilters exist if one assumes both the
continuum hypothesis and the conjecture that would eventually become Hindman’s
theorem, but the question whether these ultrafilters actually exist (i.e., whether their
existence can be established without additional assumptions) remained open—even
after Hindman’s theorem had become an actual theorem. Later, one day Galvin asked
Glazer whether these ultrafilters that he had considered existed, and, when Glazer an-
swered affirmatively almost instantly and without hesitation, Galvin’s reaction was one
of disbelief, thinking that Glazer must have misunderstood the question, which could
not have been that easy to answer. It turns out that there was, in fact, no misunder-
standing, and the question had indeed a simple answer: at the time, very few people
working on the algebra in the Čech–Stone compactification of N were aware that such
compactification can be seen as a space of ultrafilters, but Glazer did know this, and so
he knew that βN has idempotent elements, and it was not hard for him to see that the
combinatorial property that Galvin was seeking was in fact equivalent to idempotence
of the relevant ultrafilter. Neil Hindman has told this story in various places,6 such
as [14, pp. 120–121], [16, pp. 835–836], or [17, pp. 122–123]. We will now finally
proceed to prove this outstanding result (the proof below is the Galvin–Glazer one7).

Theorem 21 (Hindman [13]). Given any coloring c : N −→ {red,blue}, there exists
an infinite setX = {x1, . . . , xn, . . .} ⊆ N such that the setFS(X) is monochromatic.

Proof (sketch). Let us analyze further the proof of the Folkman–Rado–Sanders theo-
rem, Theorem 20 above. There, we begin by taking a nonprincipal idempotent ultrafil-
ter u over N, fix an arbitrary A ∈ u, and proceed to prove by induction on n ∈ N that
there are elements x1, . . . , xn such that FS(x1, . . . , xn) ∈ A.

Now, when running the induction, the inductive step starts in exactly the same way,
regardless of the value of n: choose any x1 ∈ A? = A ∩ {x ∈ N | {y ∈ N | x +
y ∈ A} ∈ u}. From there, the induction hypothesis allows us to find x2, . . . , xn+1

such that FS(x2, . . . , xn+1) ⊆ A ∩ {y ∈ N | x1 + y ∈ A}; this is what ensures that
FS(x1, x2, . . . , xn+1) ⊆ A. Notice that, for whatever value of x1 that we fix at the
beginning (as long as it belongs to A?), the remainder of the proof works equally well
for every n. So we can see that the following statement holds:

For any n ≥ 1, there are x1, . . . , xn such that FS(x1, . . . , xn) ⊆ A,
and the value of x1 does not depend on n.

In other words, it is possible to find a single number x1 ∈ N such that for every
n, x1 is the first element of a set X with n elements satisfying FS(X) ⊆ A. But

6The story, as presented here, seems to agree with Galvin’s own recollections, as verified by the author
through personal communication.

7There is also a proof of Hindman’s theorem, based on tools from topological dynamics, due to Furstenberg
and Weiss [8].
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even more is true. In fact, going back once again to the proof of Theorem 20 above, we
see that, once x1 ∈ A? has been fixed, we obtain the remaining elements {x2, . . . , xn}
satisfying FS(x1, x2, . . . , xn) by choosing them in such a way that FS(x2, . . . , xn) ⊆
B = A ∩ {y ∈ N | x1 + y ∈ A} (which is the induction hypothesis in action). The
attentive reader will notice that we can now apply the same reasoning as above to
the set B, in order to obtain x2 (that is, pick any x2 ∈ B?). So we see that with this
reasoning we can conclude the following:

For any n ≥ 3, there are x1, . . . , xn such that FS(x1, . . . , xn) ⊆ A,
and the values of x1 and x2 do not depend on n.

The reader should realize now that this reasoning can be carried out over and over.
Thus, the following statement (which the interested reader is encouraged to prove for-
mally by herself, using induction) should ring true, for every k ∈ N:

For every n > k, there are elements x1, . . . , xn such that FS(x1, . . . , xn) ⊆ A,
and the values of x1, . . . , xk do not depend on n.

With the previous claim under our belt, we proceed as follows: By recursively fix-
ing the values of the xk encountered in the previous reasoning, we obtain an infinite
sequence of elements x1, . . . , xn, . . . , satisfying that, for every n ∈ N, it is the case
that FS(x1, . . . , xn) ⊆ A. Now, it is not hard to see that this in fact implies that, if
X = {x1, . . . , xn, . . .}, then FS(X) ⊆ A: for if y ∈ FS(X), then there is a suffi-
ciently large n ∈ N such that y ∈ FS(x1, . . . , xn), and so y ∈ A. The conclusion is
that, given any nonprincipal idempotent ultrafilter u and an elementA ∈ u, there is an
infinite set X such that FS(X) ⊆ A.

Now suppose that we have a coloring c : N −→ {red,blue}. Let u be a nonprin-
cipal idempotent ultrafilter on N, and let A ∈ u be the set containing either all red
elements, or all blue elements (u contains one and only one of these two possibili-
ties). Then, by the statement whose proof we just sketched, one can find an infinite
set X ⊆ N such that FS(X) ⊆ A; in other words, FS(X) is monochromatic (in one
color or the other, depending on what color the set A represents).

4. ANOTHER APPLICATION TO ADDITIVE COMBINATORICS. In order to
present our third and last application of the theory of ultrafilters to obtain Ramsey-
theoretic results, we will need to introduce some more theory regarding the algebraic-
topological structure of the semigroup of ultrafilters. We will proceed in largely the
same way as in the previous section: first we will present the additional ultrafilter-
theoretic results without proofs,8 and then we will present full details of how these
results can be applied to provide an ultrafilter proof of van der Waerden’s theorem.

Minimal idempotents and ideals. We proceed to introduce the notions of minimal
idempotents and ideals.

Definition 22. Let (S, ∗) be a semigroup.

1. We define E(S) = {x ∈ S | x is an idempotent},
2. We define a partial order relation ≤ on E(S) by stipulating that x ≤ y if and

only if x ∗ y = y ∗ x = x.
3. A subset I ⊆ S is an ideal of S if for every x ∈ S, y ∈ I , we have x ∗ y ∈ I

and y ∗ x ∈ I .
8As noted before, an interested reader can consult [24, Section 2.1, pp. 27–30] for a short but complete

account of all the results mentioned here, or look into [17] for a more extensive treatment.
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Note that, if we have two semigroups (S, ∗) and (T, ∗), a semigroup homomor-
phism f : S −→ T , and an idempotent element x ∈ E(S), then (as f(x) ∗ f(x) =
f(x ∗ x) = f(x)) we have that f(x) is an idempotent element of T . Furthermore, if
x, y ∈ E(X) and x ≤ y, then f(x) ≤ f(y) (since f(x) ∗ f(y) = f(x ∗ y) = f(y ∗
x) = f(y) ∗ f(x) = f(y ∗ x) = f(x)). Thus, semigroup homomorphisms preserve
idempotent elements, as well as the partial order relation just defined between them.

Now suppose that we have a compact right-topological semigroup (S, ∗, τ). A cru-
cial result in this context is that minimal idempotents (that is, idempotent elements of
S that are minimal with respect to the partial order ≤) exist. This can be proved using
Zorn’s lemma together with Ellis’s lemma, along with a result ensuring that an idem-
potent element of S is minimal if and only if it belongs to some minimal closed left
ideal.9 Furthermore, whenever we have an arbitrary idempotent element x ∈ E(S)
and an arbitrary closed ideal J ⊆ S, we can always find a minimal idempotent y ∈ J
with y ≤ x. This last statement will be of central importance for the application that
we will illustrate in the next subsection.

The results mentioned in the previous paragraph will be used in the context where
the compact right-topological semigroup that we deal with is the Čech–Stone com-
pactification βX of some semigroup X . It is possible to verify (though we will not
do so here) that, if X is a semigroup and Y ⊆ X is a subsemigroup, then Y = {u ∈
βX | Y ∈ u} is a closed subsemigroup of βX . In fact, if Y ⊆ X is infinite, then
{u ∈ βX | u is nonprincipal and Y ∈ u} is also a closed subsemigroup of βX and
therefore it contains idempotent elements by Lemma 15, so we can always ensure the
existence of nonprincipal idempotent ultrafilters belonging to Y . Similarly, if I ⊆ X
is an ideal of X , then I = {u ∈ βX | I ∈ u} is a closed ideal of βX , and so is the
set {u ∈ βX | u is nonprincipal and I ∈ u} whenever I is infinite. In particular, if
u ∈ βX is an idempotent element, then one can find a nonprincipal minimal idempo-
tent v ∈ I with v ≤ u.

Application: van der Waerden’s theorem. We will now apply the theory that was
presented in the previous subsection. The application will be a new proof of van der
Waerden’s theorem. This theorem says that, whenever the set N is colored with finitely
many colors, there are arbitrarily long monochromatic arithmetic progressions.

Theorem 23 (van der Waerden [25]). Given any coloring c : N −→ {red, blue}
and any finite number l, there are numbers a, b ∈ N such that the set {a, a+ b, a+
2b, . . . , a + (l − 1)b} (which is an arithmetic progression of length l) is monochro-
matic.

Proof. Consider the set

X = {n+mx | n ∈ N,m ∈ N ∪ {0}},

the set of all polynomials (in the variable x) of degree either 0 or 1 with coefficients
in N. This set becomes a (commutative) semigroup when equipped with the usual
addition operation. Furthermore, the set

I = X \ N = {n+mx | n,m ∈ N}

of all polynomials in X with degree exactly 1, is an ideal of the semigroup X . Thus,
we have a situation where X is a semigroup that can be written as the disjoint union
I ∪ N, where N is a subsemigroup and I is an ideal of X . All of these properties

9A closed left ideal of S is a closed subset I ⊆ S satisfying x ∗ y ∈ I whenever x ∈ S and y ∈ I .

14 ©



naturally carry over to the Čech–Stone compactification, and so we have that βX is a
right-topological semigroup that can be written as the disjoint union I ∪ N, where

N = {u ∈ βX | N ∈ u}

is a closed subsemigroup, and

I = {u ∈ βX | I ∈ u}

is a closed ideal of βX .
Furthermore, for each k ∈ N ∪ {0}, we have an evaluation map

evk : X −→ N

n+mx 7−→ n+mk

which is a semigroup homomorphism and, when restricted to N, is simply the identity
map. Correspondingly, the Rudin–Keisler lifting of this mapping, evk : βX −→ N
(which, as the reader might recall, maps u to the ultrafilter {A ⊆ X | ev−1k [A] ∈ u}),
will be a continuous semigroup homomorphism whose restriction to N is simply the
identity map.

With the previous two paragraphs setting up the tools, we now take our arbitrary
coloring c : N −→ {red,blue}. Let u ∈ N be a nonprincipal minimal idempotent
(minimal within the closed subsemigroup N). Now let v be a nonprincipal minimal
idempotent (this time, minimal in all of βX) belonging to the closed ideal I , with v ≤
u. Fix an arbitrary k ∈ N ∪ {0}. Since v ≤ u and evk is a semigroup homomorphism,
we have evk(v) ≤ evk(u) = u. Now evk(v) ∈ N and u was chosen to be minimal in
N; therefore we must have evk(v) = u.

Now, since u is an ultrafilter and N ∈ u, either {n ∈ N | n is red} ∈ u or {n ∈
N | n is blue} ∈ u. Assume without loss of generality that the first alternative holds,
and we proceed to build an arithmetic progression of length l, all of whose elements
are red. Let A = {n ∈ N | n is red}. For each k ∈ {0, . . . , l − 1}, we have that A ∈
u = evk(v) = {B ⊆ X | ev−1k [B] ∈ v}. In other words, ev−1k [A] ∈ v. Since v is an
ultrafilter, and hence closed under finite intersections, we have

I ∩
(

l−1⋂
k=0

ev−1k [A]

)
∈ v,

in particular this set is nonempty and so we can choose an element a + bx ∈
I ∩

(⋂l−1
k=0 ev

−1
k [A]

)
. Since a + bx ∈ I , we have b 6= 0. Furthermore, given a k ∈

{0, . . . , l − 1}, the fact that a+ bx ∈ ev−1k [A] means that a+ kb = evk(a+ bx) ∈
A, in other words, a+ kb is red. This holds for every k ∈ {0, . . . , l − 1} and so the
whole set {a, a+ b, . . . , a+ (l − 1)b} (which is an honest arithmetic progression of
length l, since b 6= 0) consists only of red elements, and we are done.

Suppose that we color N with colors red and blue. By Theorem 23, for each l there
is either an arithmetic progression of length l that is completely red, or an arithmetic
progression of length l that is completely blue. Say that l is red or blue according
to whether the first or the second case holds. By the pigeonhole principle, either in-
finitely many l are red, or infinitely many l are blue. But this means that either there are
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arbitrarily long arithmetic progressions that are red, or there are arbitrarily long arith-
metic progressions that are blue. Thus, Theorem 23 can be strengthened by saying
that, whenever one partitions N into two pieces, then one of the pieces of the partition
contains arbitrarily long arithmetic progressions.

Note that, for the three theorems exemplified in this article, the crucial steps in each
of these proofs are when one partitions a set into two pieces and works with whichever
piece belongs to a given ultrafilter. Since ultrafilters over a set X contain a piece of
every finite partition of X , it becomes clear that the same arguments go through if one
considers colorings with any finite number of colors instead.

ACKNOWLEDGMENT. The author wishes to thank the two anonymous reviewers (whose careful reading
and sound suggestions helped improve this paper nontrivially), and Fred Galvin for clarifying certain issues
and providing some useful bibliographical pointers, especially regarding the history of the Galvin–Glazer
argument. The author was supported by a postdoctoral fellowship from DGAPA–UNAM.

REFERENCES

1. Ax, J. (1968). The elementary theory of finite fields. Ann. of Math. (2). 88(2): 239–271.
2. Ax, J., Kochen, S. (1965). Diophantine problems over local fields I. Amer. J. Math. 87: 605–630.
3. Baumgartner, J. (1974). A short proof of Hindman’s theorem. J. Combin. Theory Ser. A. 17(3): 384–386.
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24. Todorčević, S. (2010). Introduction to Ramsey Spaces. Annals of Mathematics Studies 104. Princeton,
NJ and Oxford, UK: Princeton Univ. Press.

25. van der Waerden, B. L. (1927). Beweis einer Baudetschen Vermutung. Nieuw archief voor Wiskunde 15:
212–216.
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